Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834703

RESUMO

Carbon xerogels (CXs) are materials obtained via the pyrolysis of resins prepared via the sol-gel polycondensation of resorcinol and formaldehyde. These materials attract great attention as adsorbents, catalyst supports, and energy storage materials. One of the most interesting features of CXs is the possibility of fine-tuning their structures and textures by changing the synthesis conditions in the sol-gel stage. Thus, the first part of this review is devoted to the processes taking place in the polycondensation stage of organic precursors. The formation of hydroxymethyl derivatives of resorcinol and their polycondensation take place at this stage. Both of these processes are catalyzed by acids or bases. It is revealed that the sol-gel synthesis conditions, such as pH, the formaldehyde/resorcinol ratio, concentration, and the type of basic modifier, all affect the texture of the materials being prepared. The variation in these parameters allows one to obtain CXs with pore sizes ranging from 2-3 nm to 100-200 nm. The possibility of using other precursors for the preparation of organic aerogels is examined as well. For instance, if phenol is used instead of resorcinol, the capabilities of the sol-gel method become rather limited. At the same time, other phenolic compounds can be applied with great efficiency. The methods of gel drying and the pyrolysis conditions are also reviewed. Another important aspect analyzed within this review is the surface modification of CXs by introducing various functional groups and heteroatoms. It is shown that compounds containing nitrogen, sulfur, boron, or phosphorus can be introduced at the polycondensation stage to incorporate these elements into the gel structure. Thus, the highest surface amount of nitrogen (6-11 at%) was achieved in the case of the polycondensation of formaldehyde with melamine and hydroxyaniline. Finally, the methods of preparing metal-doped CXs are overviewed. Special attention is paid to the introduction of a metal precursor in the gelation step. The elements of the iron subgroup (Fe, Ni, Co) were found to catalyze carbon graphitization. Therefore, their introduction can be useful for enhancing the electrochemical properties of CXs. However, since the metal surface is often covered by carbon, such materials are poorly applicable to conventional catalytic processes. In summary, the applications of CXs and metal-doped CXs are briefly mentioned. Among the promising application areas, Li-ion batteries, supercapacitors, fuel cells, and adsorbents are of special interest.

2.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374606

RESUMO

Zeolites and metal-doped zeolites are now widely considered as low-temperature hydrocarbon traps to be a part of emission control systems in automobiles. However, due to the high temperature of exhaust gases, the thermal stability of such sorbent materials is of great concern. To avoid the thermal instability problem, in the present work, laser electrodispersion was used to deposit Pd particles on the surface of ZSM-5 zeolite grains (SiO2/Al2O3 = 55 and SiO2/Al2O3 = 30) to obtain Pd/ZSM-5 materials with a Pd loading as low as 0.03 wt.%. The thermal stability was evaluated in a prompt thermal aging regime involving thermal treatment at temperatures up to 1000 °C in a real reaction mixture (CO, hydrocarbons, NO, an excess of O2, and balance N2) and a model mixture of the same composition with the exception of hydrocarbons. Low-temperature nitrogen adsorption and X-ray diffraction analysis were used to examine the stability of the zeolite framework. Special attention was paid to the state of Pd after thermal aging at varied temperatures. By means of transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-Vis spectroscopy, it was shown that palladium, having been initially located on the surface of zeolite, undergoes oxidation and migrates into the zeolite's channels. This enhances the trapping of hydrocarbons and their subsequent oxidation at lower temperatures.

3.
Materials (Basel) ; 16(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37176383

RESUMO

Pd/Al2O3 catalyst of the "crust" type with Pd loading of 0.03 wt.% was prepared by the deposition of 2 nm Pd particles on the outer surface of the alumina support using laser electrodispersion (LED). This technique differs from a standard laser ablation into a liquid in that the formation of monodisperse nanoparticles occurs in the laser torch plasma in a vacuum. As is found, the LED-prepared catalyst surpasses Pd-containing three-way catalysts, obtained by conventional chemical synthesis, in activity and stability in CO oxidation under prompt thermal aging conditions. Thus, the LED-prepared Pd/Al2O3 catalyst showed the best thermal stability up to 1000 °C. The present research is focused on the study of the high-temperature evolution of the Pd/Al2O3 catalyst in two reaction mixtures by a set of physicochemical methods (transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-vis spectroscopy). In order to follow the dispersion of the Pd nanoparticles during the thermal aging procedure, the testing reaction of ethane hydrogenolysis was also applied. The possible reasons for the high stability of LED-prepared catalysts are suggested.

4.
Gels ; 8(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547333

RESUMO

Pd-containing catalysts based on highly dispersed aerogel-derived mayenite were prepared via two approaches. The Pd@C12A7 sample was obtained through the addition of Pd nitrate solution to a fresh Ca(OH)2-Al(OH)3 gel. Pd/C12A7 was synthesized through conventional wet impregnation of the aerogel-derived mayenite. The evolution of the textural characteristics of the support (C12A7) depending on the calcination temperature was investigated. Pd-containing samples were explored using transmission electron microscopy and spin probe EPR spectroscopy. Using the latter method, the presence of active oxygen species capable of producing nitroxyl radicals from diphenylamine was observed. The activity of these species and the reproducibility of their redox behavior were studied in three cycles of temperature-programmed reduction in both hydrogen and CO atmospheres. A prompt thermal aging technique was used to access and compare the activity of the samples towards CO oxidation. The state of Pd species before and after the aging procedure was studied via UV-Vis spectroscopy. It was found that the dispersion of PdO was higher in the case of the Pd/C12A7 catalysts compared to the Pd@C12A7 sample. This is why the Pd/C12A7 catalyst demonstrated higher activity in CO oxidation and better reducibility in TPR cycles.

5.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335765

RESUMO

In the present work, a series of two-component Ni-Mg-O oxide systems were prepared using a sol-gel technique at varied pH of hydrolysis procedure. The aqueous solutions of nitric acid or ammonia were added to control the pH values. The xerogel samples obtained after drying were analysed using a thermogravimetric approach. The oxide systems were characterized by a set of physicochemical methods (low-temperature nitrogen adsorption, X-ray diffraction analysis, scanning electron microscopy, UV-vis spectroscopy, and temperature-programmed reduction method). The thermal stability of the samples was examined in a testing reaction of CO oxidation in a prompt thermal aging regime. It was revealed that the pH value during the magnesium methoxide hydrolysis stage significantly affects the properties of the intermediate hydroxide and final oxide nanomaterials. The thermal decomposition of nitric acid or ammonia is accompanied by exothermal effects, which noticeably influence the textural characteristics. Moreover, the pH of the hydrolysing solution defines the strength of the nickel interaction with the MgO matrix. An increase in pH facilitates the formation of the NixMg1-xO solid solution with a higher amount of incorporated nickel, which is characterized by the reproducible broad temperature range of the hydrogen uptake and the enhanced thermal stability.

6.
Materials (Basel) ; 15(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329472

RESUMO

A sol-gel technique was applied to prepare the two-component oxide system Cu-Mg-O, where MgO plays the role of oxide matrix, and CuO is an active chemical looping component. The prepared samples were characterized by scanning electron microscopy, low-temperature nitrogen adsorption, and X-ray diffraction analysis. The reduction behavior of the Cu-Mg-O system was examined in nine consecutive reduction/oxidation cycles. The presence of the MgO matrix was shown to affect the ability of CuO towards reduction and re-oxidation significantly. During the first reduction/oxidation cycle, the main characteristics of the oxide system (particle size, crystallization degree, etc.) undergo noticeable changes. Starting from the third cycle, the system exhibits a stable operation, providing the uptake of similar hydrogen amounts within the same temperature range. Based on the obtained results, the two-component Cu-Mg-O system can be considered as a prospective chemical looping agent.

7.
Materials (Basel) ; 13(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023242

RESUMO

The present work aimed to prepare Ni-Mo particles distributed within the MgO matrix. With this purpose in mind, a ternary Ni-Mo-Mg oxide system was synthesized by a sol-gel approach. The samples were studied by low-temperature nitrogen adsorption, X-ray diffraction analysis, and transmission electron microscopy equipped with energy dispersive X-ray analysis. Both the nickel and molybdenum species in the prepared samples were characterized by a fine and uniform distribution. The diffraction pattern of the ternary system was predominantly represented by the MgO reflections. The catalytic activity of the samples was tested in the decomposition of 1,2-dichloroethane used as a representative of the chlorinated organic wastes. The nanostructured carbon filaments resulting from the decomposition of the halogenated substrate were found to be characterized by a narrow diameter distribution, according to the transmission electron microscopy data, thus confirming the fine distribution of the active Ni-Mo particles. The results obviously show the advantages of the sol-gel technique for obtaining efficient catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...