Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaesth Intensive Care ; 33(6): 726-32, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16398376

RESUMO

Anaesthesiologists have traditionally been consulted to help design breathing circuits to attain and maintain target end-tidal carbon dioxide (P(ET)CO2). The methodology has recently been simplified by breathing circuits that sequentially deliver fresh gas (not containing carbon dioxide (CO2)) and reserve gas (containing CO2). Our aim was to determine the roles of fresh gas flow, reserve gas PCO2 and minute ventilation in the determination of P(ET)CO2. We first used a computer model of a non-rebreathing sequential breathing circuit to determine these relationships. We then tested our model by monitoring P(ET)CO2 in human volunteers who increased their minute ventilation from resting to five times resting levels. The optimal settings to maintain P(ET)CO2 independently of minute ventilation are 1) fresh gas flow equal to minute ventilation minus anatomical deadspace ventilation, and 2) reserve gas PCO2 equal to alveolar PCO2. We provide an equation to assist in identifying gas settings to attain a target PCO2. The ability to precisely attain and maintain a target PCO2 (isocapnia) using a sequential gas delivery circuit has multiple therapeutic and scientific applications.


Assuntos
Anestesia com Circuito Fechado/métodos , Dióxido de Carbono/sangue , Espaço Morto Respiratório/fisiologia , Gasometria , Estudos de Casos e Controles , Feminino , Humanos , Hipercapnia/prevenção & controle , Hipocapnia/prevenção & controle , Masculino , Monitorização Fisiológica , Probabilidade , Troca Gasosa Pulmonar , Valores de Referência , Respiração Artificial , Mecânica Respiratória , Sensibilidade e Especificidade , Volume de Ventilação Pulmonar
2.
Anesth Analg ; 93(5): 1188-91, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11682394

RESUMO

UNLABELLED: Hyperpnea increases anesthetic elimination but is difficult to implement with current anesthetic circuits without decreasing arterial PCO2. To circumvent this, we modified a standard resuscitation bag to maintain isocapnia during hyperpnea without rebreathing by passively matching inspired PCO2 to minute ventilation. We evaluated the feasibility of using this apparatus to accelerate recovery from anesthesia in a pilot study in four isoflurane-anesthetized dogs. The apparatus was easy to use, and all dogs tolerated being ventilated with it. Under our experimental conditions, isocapnic hyperpnea reduced the time to extubation by 62%, from an average of 17.5 to 6.6 min (P = 0.012), but not time from extubation to standing unaided. This apparatus may provide a practical means of applying isocapnic hyperpnea to shorten recovery time from volatile anesthetics. IMPLICATIONS: A simple modification to a standard resuscitation bag allows one to increase ventilation without decreasing blood carbon dioxide levels. In dogs, we confirmed that this circuit can be used to accelerate the elimination of and recovery from volatile anesthetics.


Assuntos
Período de Recuperação da Anestesia , Anestesia por Inalação/instrumentação , Anestésicos Inalatórios/farmacocinética , Dióxido de Carbono/sangue , Isoflurano/farmacocinética , Animais , Apneia/etiologia , Apneia/prevenção & controle , Cães , Feminino , Hiperventilação/sangue , Hiperventilação/complicações , Hiperventilação/metabolismo , Masculino , Pressão Parcial , Projetos Piloto , Ressuscitação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...