Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3823, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780129

RESUMO

Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, we herein established a combinatorial approach by tethering a myriad of chemical fragments to peripheral groups of structurally diverse macrocyclic scaffolds in a combinatorial fashion, all at a picomole scale in nanoliter volumes using acoustic droplet ejection technology. In a proof-of-concept, we generate a target-tailored library of 19,968 macrocycles by conjugating 104 carboxylic-acid fragments to 192 macrocyclic scaffolds. The high reaction efficiency and small number of side products of the acylation reactions allowed direct assay without purification and thus a large throughput. In screens, we identify nanomolar inhibitors against thrombin (Ki = 44 ± 1 nM) and the MDM2:p53 protein-protein interaction (Kd MDM2 = 43 ± 18 nM). The increased efficiency of macrocycle synthesis and screening and general applicability of this approach unlocks possibilities for generating leads against any protein target.


Assuntos
Ciclização , Fenômenos Biofísicos
2.
mBio ; 12(6): e0262121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724816

RESUMO

Multiple enveloped RNA viruses of the family Paramyxoviridae and Pneumoviridae, like measles virus (MeV), Nipah virus (NiV), canine distemper virus (CDV), or respiratory syncytial virus (RSV), are of high clinical relevance. Each year a huge number of lives are lost as a result of these viral infections. Worldwide, MeV infection alone is responsible for over a hundred thousand deaths each year despite available vaccine. Therefore, there is an urgent need for treatment options to counteract these viral infections. The development of antiviral drugs in general stands as a huge challenge due to the rapid emergence of viral escape mutants. Here, we disclose the discovery of a small-molecule antiviral, compound 1 (ZHAWOC9045), active against several pneumo-/paramyxoviruses, including MeV, NiV, CDV, RSV, and parainfluenza virus type 5 (PIV-5). A series of mechanistic characterizations revealed that compound 1 targets a host factor which is indispensable for viral genome replication. Drug resistance profiling against a paramyxovirus model (CDV) demonstrated no detectable adaptation despite prolonged time of investigation, thereby mitigating the rapid emergence of escape variants. Furthermore, a thorough structure-activity relationship analysis of compound 1 led to the invention of 100-times-more potent-derivatives, e.g., compound 2 (ZHAWOC21026). Collectively, we present in this study an attractive host-directed pneumoviral/paramyxoviral replication inhibitor with potential therapeutic application. IMPORTANCE Measles virus, respiratory syncytial virus, canine distemper virus, and Nipah virus are some of the clinically significant RNA viruses that threaten substantial number of lives each year. Limited to no availability of treatment options for these viral infections makes it arduous to handle the outbreaks. This highlights the major importance of developing antivirals to fight not only ongoing infections but also potential future epidemics. Most of the discovered antivirals, in clinical trials currently, are virus targeted, which consequently poses the challenge of rapid emergence of escape variants. Here, we present compound 1 (ZHAWOC9045), discovered to target viral replication in a host-dependent manner, thereby exhibiting broad-spectrum activity against several members of the family Pneumo-/Paramyxoviridae. The inability of viruses to mutate against the inhibitor mitigated the critical issue of generation of escape variants. Importantly, compound 1 was successfully optimized to a highly potent variant, compound 2 (ZHAWOC21026), with a promising profile for pharmacological intervention.


Assuntos
Antivirais/farmacologia , Paramyxoviridae/fisiologia , Pneumovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Antivirais/química , Descoberta de Drogas , Humanos , Paramyxoviridae/genética , Infecções por Paramyxoviridae/tratamento farmacológico , Infecções por Paramyxoviridae/virologia , Pneumovirus/genética , Infecções por Pneumovirus/tratamento farmacológico , Infecções por Pneumovirus/virologia
3.
Angew Chem Int Ed Engl ; 60(40): 21702-21707, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34268864

RESUMO

Macrocyclic compounds are an attractive class of therapeutic ligands against challenging targets, such as protein-protein interactions. However, the development of macrocycles as drugs is hindered by the lack of large combinatorial macrocyclic libraries, which are cumbersome, expensive, and time consuming to make, screen, and deconvolute. Here, we established a strategy for synthesizing and screening combinatorial libraries on a picomolar scale by using acoustic droplet ejection to combine building blocks at nanoliter volumes, which reduced the reaction volumes, reagent consumption, and synthesis time. As a proof-of-concept, we assembled a 2700-member target-focused macrocyclic library that we could subsequently assay in the same microtiter synthesis plates, saving the need for additional transfers and deconvolution schemes. We screened the library against the MDM2-p53 protein-protein interaction and generated micromolar and sub-micromolar inhibitors. Our approach based on acoustic liquid transfer provides a general strategy for the development of macrocycle ligands.


Assuntos
Compostos Macrocíclicos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acústica , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Viruses ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477492

RESUMO

Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity.


Assuntos
Antivirais/farmacologia , Vírus da Cinomose Canina/efeitos dos fármacos , Vírus da Cinomose Canina/fisiologia , Cinomose/virologia , Avaliação Pré-Clínica de Medicamentos , Internalização do Vírus , Animais , Antivirais/química , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Cinomose/tratamento farmacológico , Cinomose/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Hospedeiro-Patógeno , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Virais/metabolismo , Bibliotecas de Moléculas Pequenas , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
5.
Chem Sci ; 11(30): 7858-7863, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34094158

RESUMO

Macrocycles provide an attractive modality for drug development, but generating ligands for new targets is hampered by the limited availability of large macrocycle libraries. We have established a solution-phase macrocycle synthesis strategy in which three building blocks are coupled sequentially in efficient alkylation reactions that eliminate the need for product purification. We demonstrate the power of the approach by combinatorially reacting 15 bromoacetamide-activated tripeptides, 42 amines, and 6 bis-electrophile cyclization linkers to generate a 3780-compound library with minimal effort. Screening against thrombin yielded a potent and selective inhibitor (K i = 4.2 ± 0.8 nM) that efficiently blocked blood coagulation in human plasma. Structure-activity relationship and X-ray crystallography analysis revealed that two of the three building blocks acted synergistically and underscored the importance of combinatorial screening in macrocycle development. The three-component library synthesis approach is general and offers a promising avenue to generate macrocycle ligands to other targets.

6.
Anal Chem ; 91(1): 1098-1104, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30511572

RESUMO

Aminopeptidases, such as dipeptidyl peptidase-4 (DPP-4, CD26), are potent therapeutic targets for pharmacological interventions because they play key roles in many important pathological pathways. To analyze aminopeptidase activity in vitro (including high-throughput screening [HTS]), in vivo, and ex vivo, we developed a highly sensitive and quantitative bioluminescence-based readout method. We successfully applied this method to screening drugs with potential DPP-4 inhibitory activity. Using this method, we found that cancer drug mitoxantrone possesses significant DPP-4 inhibitory activity both in vitro and in vivo. The pharmacophore of mitoxantrone was further investigated by testing a variety of its structural analogues.


Assuntos
Antineoplásicos/farmacologia , Dipeptidil Peptidase 4/análise , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Descoberta de Drogas , Mitoxantrona/farmacologia , Humanos , Medições Luminescentes
7.
Cell Stress ; 2(4): 82-90, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31225471

RESUMO

The protein ASC is a central component of most inflammasome complexes, forming functional oligomeric filaments that activate large amounts of pro-caspase-1 for further IL-1ß processing and the induction of Gasdermin D-dependent cell death. The central role of inflammasomes in the innate immune response pose them as new molecular targets for therapy of diverse acute, chronic and inherited autoinflammatory pathologies. In recent years, an increasing number of molecules were proposed to modulate inflammasome signalling by interacting with different components of inflammasome complexes. However, the difficult in vitro reconstitution of the inflammasome has limited the development of specific on-target biochemical assays for compound activity confirmation and for drug discovery in high throughput screening setups. Here we describe a homogeneous, pH-based ASC oligomerization assay that employs fluorescence anisotropy (FA) to monitor the in vitro filament formation of the PYD domain of human ASC. The absence of additional solubility tags as well as of proteolytic enzymes to initiate the filament reaction makes this assay suitable for testing the direct effect of small molecules on filament formation in high throughput format. The ability of the assay to detect modulators of filament formation was confirmed by using a non-filament forming PYD mutant. The high and reproducible Z'-factor of 0.7 allowed to screen 10,100 compounds by high-throughput screening (HTS) aiming to identify inhibitors of ASC filament. While none of these molecules was able to inhibit ASC filament formation in vitro, the assay is directly amenable to screen other compound classes or validate candidate molecules from other screens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...