Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164333, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209741

RESUMO

Four sites in the western sector of Lipari Island with still active hydrothermal activity are here considered. The petrography (mesoscopic observations and XRPD) and geochemistry (major, minor and trace elements chemistry) of ten representative and extremely altered volcanic rocks were characterized. Two types of parageneses of altered rocks are discriminable, one rich in silicate phases (opal/cristobalite, montmorillonite, kaolinite, alunite and hematite) and one in sulphates (gypsum, plus minor amounts of anhydrite or bassanite). The altered silicate-rich rocks are rich in SiO2, Al2O3, Fe2O3 and H2O, and depleted in CaO, MgO, K2O and Na2O, while the sulphate-rich ones are extremely enriched in CaO and SO4 in comparison with local unaltered volcanic rocks. The content of many incompatible elements is similar in altered silicate-rich rocks and lower in sulphate-rich ones with respect to the pristine volcanic rocks; conversely, almost all REEs are markedly enriched in silicate-rich rocks and heavy REEs are enriched in sulphate-rich altered rocks compared to unaltered volcanic rocks. Reaction path modelling of basaltic andesite dissolution in local steam condensate predicts the production of amorphous-silica, anhydrite, goethite, and kaolinite (or smectites and saponites) as stable secondary minerals and alunite, jarosite, and jurbanite as ephemeral minerals. Considering possible post-depositional reactions and admitting that the presence of two distinct parageneses is apparent, since gypsum is prone to form large crystals, it can be concluded that there is an excellent agreement between the alteration minerals occurring in nature and those predicted by geochemical modelling. Consequently, the modelled process is the main responsible for the production of the advanced argillic alteration assemblage of "Cave di Caolino" on Lipari Island. Since rock alteration is sustained by the H2SO4 solution produced by hydrothermal steam condensation, there is no need to invoke the involvement of SO2-HCl-HF-bearing magmatic fluids, in line with the absence of fluoride minerals.


Assuntos
Sulfato de Cálcio , Caulim , Dióxido de Silício , Vapor , Ilhas , Silicatos/química , Minerais/análise , Sulfatos
2.
Chemosphere ; 219: 896-913, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30572239

RESUMO

Mercury (Hg) is a widespread, highly toxic persistent pollutant with adverse health effects on humans. So far, concentrations below the method detection limit have always been reported by studies on the concentration of mercury in bottled water when determined using instrumental analytical methods. These are often very expensive and are unaffordable for many laboratories. In this work, a less expensive method based on cold vapour atomic fluorescence spectrometry has been employed to determine total mercury (HgT) concentrations in bottled natural mineral waters. In all, 255 waters representing 164 different typologies were analysed. They came from 136 springs located in 18 Italian regions. In all samples, HgT concentrations were found in the range of sub-nanogram to a few nanograms per litre, well below the National and European regulatory limit (1 µg L-1). Differences in HgT concentrations were related not only to the environmental characteristics of the springs but also to the extent and impact of human activities. Higher concentrations were found in waters coming from regions with former mining and/or natural thermal and volcanic activity. These data allowed us to estimate the mercury intake by population (adults, children and toddlers) from drinkable mineral waters consumption. The mean mercury daily intake was found to be remarkably lower, not only than the provisional tolerable value (1 µg L-1 according to European and Italian legislation) but also than the estimated provisional tolerable weekly intake (PTWI) value (4 µg kg-1 body weight) recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).


Assuntos
Água Potável/química , Poluentes Ambientais/química , Contaminação de Alimentos/análise , Mercúrio/química , Humanos , Itália
3.
Arch Environ Contam Toxicol ; 70(3): 506-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26546421

RESUMO

Thalli of the lichen Pseudevernia furfuracea were transplanted for 3 months at 32 sites located in and around an industrial area of S Italy whose main anthropogenic sources of atmospheric trace elements are a biomass power plant and vehicular emissions. Meteorological stations were deployed at four sites for finer detection of local wind patterns. The station near the biomass power plant showed a significant S-SE wind component not detectable by measurements made at the regional scale or by the other local meteorological stations. Sb, Sn, and Mo showed a very high degree of covariance and a statistically significant correlation with traffic rate. No element concentrations in the exposed thalli were correlated with distance from the biomass power plant, although Ti and Co concentrations showed a significant correlation with the "Potential Number of Times the Winds coming from the biomass power plant Reach each exposure Site" (PNTWRS). This value is calculated dividing the time (minutes) during the experimental trimester that the wind blows from the power plant into each of the four geographical sides by the time (minutes) the winds passing through the power plant take to reach the exposure sites in each of the four geographical sides.) during the period of thalli transplantation. Moreover, there were significant differences among clusters of sites with different levels of enrichment of Ti, Co, Al, V, and Cu and a "local control" group. These results, together with the high covariance of the Al-Ti and V-Co pairs, indicate an association between the biomass power plant and spatial variation of Ti, Co, Al, and V levels in the transplanted lichens. The nature of the fuels used in the biomass power plant explains the spatial variation of As, Cr, Cu, and Zn concentrations.


Assuntos
Poluentes Atmosféricos/análise , Ascomicetos/química , Monitoramento Ambiental/métodos , Líquens/química , Oligoelementos/análise , Itália , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...