RESUMO
Aristotelia chilensis or "maqui" is a tree native to Chile used in the folk medicine of the Mapuche people as an anti-inflammatory agent for the treatment of digestive ailments, fever, and skin lesions. Maqui fruits are black berries which are considered a "superfruit" with notable potential health benefits, promoted to be an antioxidant, cardioprotective, and anti-inflammatory. Maqui leaves contain non-iridoid monoterpene indole alkaloids which have previously been shown to act on nicotinic acetylcholine receptors, potassium channels, and calcium channels. Here, we isolated a new alkaloid from maqui leaves, now called makomakinol, together with the known alkaloids aristoteline, hobartine, and 3-formylindole. Moreover, the polyphenols quercetine, ethyl caffeate, and the terpenes, dihydro-ß-ionone and terpin hydrate, were also obtained. In light of the reported analgesic and anti-nociceptive properties of A. chilensis, in particular a crude mixture of alkaloids containing aristoteline and hobartinol (PMID 21585384), we therefore evaluated the activity of aristoteline and hobartine on NaV1.8, a key NaV isoform involved in nociception, using automated whole-cell patch-clamp electrophysiology. Aristoteline and hobartine both inhibited Nav1.8 with an IC50 of 68 ± 3 µM and 54 ± 1 µM, respectively. Hobartine caused a hyperpolarizing shift of the voltage-dependence of the activation, whereas aristoteline did not change the voltage-dependence of the activation or inactivation. The inhibitory activity of these alkaloids on NaV channels may contribute to the reported analgesic properties of Aristotelia chilensis used by the Mapuche people.
Assuntos
Alcaloides , Elaeocarpaceae , Humanos , Alcaloides/farmacologia , Alcaloides Indólicos , Extratos Vegetais/farmacologia , Analgésicos/farmacologia , Anti-InflamatóriosRESUMO
Animal venoms are rich sources of neuroactive compounds, including anti-inflammatory, antiepileptic, and antinociceptive molecules. Our study identified a protonectin peptide from the wasp Parachartergus fraternus' venom using mass spectrometry and cDNA library construction. Using this peptide as a template, we designed a new peptide, protonectin-F, which exhibited higher antinociceptive activity and less motor impairment compared to protonectin. In drug interaction experiments with naloxone and AM251, Protonectin-F's activity was decreased by opioid and cannabinoid antagonism, two critical antinociception pathways. Further experiments revealed that this effect is most likely not induced by direct action on receptors but by activation of the descending pain control pathway. We noted that protonectin-F induced less tolerance in mice after repeated administration than morphine. Protonectin-F was also able to decrease TNF-α production in vitro and modulate the inflammatory response, which can further contribute to its antinociceptive activity. These findings suggest that protonectin-F may be a potential molecule for developing drugs to treat pain disorders with fewer adverse effects. Our results reinforce the biotechnological importance of animal venom for developing new molecules of clinical interest.
Assuntos
Peptídeos , Venenos de Vespas , Camundongos , Animais , Venenos de Vespas/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Morfina/farmacologia , Analgésicos Opioides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêuticoRESUMO
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.
Assuntos
Venenos de Aranha , Peçonhas , Animais , Peçonhas/farmacologia , Brasil , Mosquitos Vetores , Peptídeos/farmacologia , Insetos , Venenos de Aranha/toxicidade , Venenos de Aranha/químicaRESUMO
Drimys winteri J.R.Forst. & G.Forst, a South American evergreen shrub that is used by the Mapuche people for treatment of several painful conditions, contains polygodial, a lipophilic drimane-type sesquiterpene dialdehyde with known activity at transient receptor potential channel family members including TRPA1 and TRPV1. We sought to assess the activity of polygodial at NaV1.7 and NaV1.8, two key isoforms of the voltage-gated sodium channel family involved in nociception. Polygodial was isolated from D. winteri by thin-layer chromatography and analysed structurally by 1 D and 2 D nuclear magnetic resonance (NMR) spectroscopy. Activity at heterologously expressed NaV1.7 and NaV1.8 was assessed using automated whole-cell patch-clamp electrophysiology. Here, we show that polygodial inhibits members of the voltage-gated sodium channel family, specifically NaV1.7 and NaV1.8, without changing the voltage-dependence of activation or inactivation. Activity of polygodial at voltage-gated sodium channels may contribute to the previously reported antinociceptive properties.
Assuntos
Drimys , Sesquiterpenos , Canais de Sódio Disparados por Voltagem , Humanos , Sesquiterpenos/farmacologiaRESUMO
Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7-NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more "drug-like" molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.