Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 190: 24-34, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527667

RESUMO

Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking ß-sarcoglycan (ß-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this ß-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in ß-SG-/- mice. Male ß-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female ß-SG-/- hearts. This protection of females was independent of ovarian hormones. Male ß-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of ß-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male ß-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male ß-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.


Assuntos
Antioxidantes , Cardiomiopatias , Miocárdio , Estresse Oxidativo , Sarcoglicanas , Animais , Masculino , Sarcoglicanas/metabolismo , Sarcoglicanas/genética , Feminino , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Camundongos , Antioxidantes/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Suscetibilidade a Doenças , Isoproterenol , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética
2.
Mol Ther ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38549375

RESUMO

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.

3.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464017

RESUMO

Chronic kidney disease (CKD) is a leading cause of death, and its progression is driven by glomerular podocyte injury and loss, manifesting as proteinuria. Proteinuria includes urinary loss of coagulation zymogens, cofactors, and inhibitors. Importantly, both CKD and proteinuria significantly increase the risk of thromboembolic disease. Prior studies demonstrated that anticoagulants reduced proteinuria in rats and that thrombin injured cultured podocytes. Herein we aimed to directly determine the influence of circulating prothrombin on glomerular pathobiology. We hypothesized that (pro)thrombin drives podocytopathy, podocytopenia, and proteinuria. Glomerular proteinuria was induced with puromycin aminonucleoside (PAN) in Wistar rats. Circulating prothrombin was either knocked down using a rat-specific antisense oligonucleotide or elevated by serial intravenous infusions of prothrombin protein, which are previously established methods to model hypo- (LoPT) and hyper-prothrombinemia (HiPT), respectively. After 10 days (peak proteinuria in this model) plasma prothrombin levels were determined, kidneys were examined for (pro)thrombin co-localization to podocytes, histology, and electron microscopy. Podocytopathy and podocytopenia were determined and proteinuria, and plasma albumin were measured. LoPT significantly reduced prothrombin colocalization to podocytes, podocytopathy, and proteinuria with improved plasma albumin. In contrast, HiPT significantly increased podocytopathy and proteinuria. Podocytopenia was significantly reduced in LoPT vs. HiPT rats. In summary, prothrombin knockdown ameliorated PAN-induced glomerular disease whereas hyper-prothrombinemia exacerbated disease. Thus, (pro)thrombin antagonism may be a viable strategy to simultaneously provide thromboprophylaxis and prevent podocytopathy-mediated CKD progression.

4.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352420

RESUMO

Single-stranded DNA (ssDNA) templates along with Cas9 have been used for gene insertion but suffer from low efficiency. Here, we show that ssDNA with chemical modifications in 10-17% of internal bases (eDNA) is compatible with the homologous recombination machinery. Moreover, eDNA templates improve gene insertion by 2-3 fold compared to unmodified and end-modified ssDNA in airway basal stem cells (ABCs), hematopoietic stem and progenitor cells (HSPCs), T-cells and endothelial cells. Over 50% of alleles showed gene insertion in three clinically relevant loci (CFTR, HBB, and CCR5) in ABCs using eDNA and up to 70% of alleles showed gene insertion in the HBB locus in HSPCs. This level of correction is therapeutically relevant and is comparable to adeno-associated virus-based templates. Knocking out TREX1 nuclease improved gene insertion using unmodified ssDNA but not eDNA suggesting that chemical modifications inhibit TREX1. This approach can be used for therapeutic applications and biological modeling.

5.
Cell Oncol (Dordr) ; 47(1): 259-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676378

RESUMO

PURPOSE: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS: We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS: Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Osteossarcoma , Animais , Cães , Humanos , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteossarcoma/patologia , Fosforilação
6.
Mol Ther Methods Clin Dev ; 31: 101144, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027058

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive X-linked disease caused by mutations in the DMD gene that prevent the expression of a functional dystrophin protein. Exon duplications represent 6%-11% of mutations, and duplications of exon 2 (Dup2) are the most common (∼11%) of duplication mutations. An exon-skipping strategy for Dup2 mutations presents a large therapeutic window. Skipping one exon copy results in full-length dystrophin expression, whereas skipping of both copies (Del2) activates an internal ribosomal entry site (IRES) in exon 5, inducing the expression of a highly functional truncated dystrophin isoform. We have previously confirmed the therapeutic efficacy of AAV9.U7snRNA-mediated skipping in the Dup2 mouse model and showed the absence of off-target splicing effects and lack of toxicity in mice and nonhuman primates. Here, we report long-term dystrophin expression data following the treatment of 3-month-old Dup2 mice with the scAAV9.U7.ACCA vector. Significant exon 2 skipping and robust dystrophin expression in the muscles and hearts of treated mice persist at 18 months after treatment, along with the partial rescue of muscle function. These data extend our previous findings and show that scAAV9.U7.ACCA provides long-term protection by restoring the disrupted dystrophin reading frame in the context of exon 2 duplications.

7.
Mol Ther Methods Clin Dev ; 30: 16-29, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746244

RESUMO

Anc80L65 is a synthetic, ancestral adeno-associated virus that has high tropism toward retinal photoreceptors after subretinal injection in mice and non-human primates. We characterized, for the first time, the post-intravitreal cell-specific transduction profile of Anc80L65 compared with AAV9. Here we use Anc80L65 and AAV9 to intravitreally deliver a copy of the gene encoding GFP into WT C57Bl/6J mice. GFP expression was driven by one of two clinically relevant promoters, chicken ß actin (CB) or truncated MECP2 (P546). After qualitative assessment of relative GFP expression, we found Anc80L65 and AAV9 to have similar transduction profiles. Through the development of a novel method for quantifying GFP-positive retinal cells, we found Anc80L65 to have higher tropism in Müller glia and AAV9 to have higher tropism in horizontal cells. In addition, we found P546 to promote GFP expression at a more moderate level compared with the high levels seen under the CB promoter. Finally, for the first time, we characterized Anc80L65 cross-reactivity in human sera; 83% of patients with AAV2 pre-existing antibodies were found to be seropositive for Anc80L65. This study demonstrates the expanded therapeutic applications of Anc80L65 to treat retinal disease and provides the first insights to Anc80L65 pre-existing immunity in humans.

8.
Mol Ther Methods Clin Dev ; 30: 486-499, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706184

RESUMO

Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.

9.
Front Cell Dev Biol ; 11: 1181040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397246

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.

10.
BMC Biol ; 21(1): 98, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106386

RESUMO

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Perfilação da Expressão Gênica , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Microambiente Tumoral/genética
11.
Mol Ther Nucleic Acids ; 30: 479-492, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36420217

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.

12.
Mol Ther Methods Clin Dev ; 27: 47-60, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36186954

RESUMO

In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.

13.
Mol Ther Methods Clin Dev ; 26: 279-293, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35949298

RESUMO

Duchenne muscular dystrophy (DMD) is typically caused by mutations that disrupt the DMD reading frame, but nonsense mutations in the 5' part of the gene induce utilization of an internal ribosomal entry site (IRES) in exon 5, driving expression of a highly functional N-truncated dystrophin. We have developed an AAV9 vector expressing U7 small nuclear RNAs targeting DMD exon 2 and have tested it in a mouse containing a duplication of exon 2, in which skipping of both exon 2 copies induces IRES-driven expression, and skipping of one copy leads to wild-type dystrophin expression. One-time intravascular injection either at postnatal days 0-1 or at 2 months results in efficient exon skipping and dystrophin expression, and significant protection from functional and pathologic deficits. Immunofluorescence quantification showed 33%-53% average dystrophin intensity and 55%-79% average dystrophin-positive fibers in mice treated in adulthood, with partial amelioration of DMD pathology and correction of DMD-associated alterations in gene expression. In mice treated neonatally, dystrophin immunofluorescence reached 49%-85% of normal intensity and 76%-99% dystrophin-positive fibers, with near-complete correction of dystrophic pathology, and these beneficial effects persisted for at least 6 months. Our results demonstrate the robustness, durability, and safety of exon 2 skipping using scAAV9.U7snRNA.ACCA, supporting its clinical use.

14.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34847621

RESUMO

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Biópsia , Distrofina/análise , Imunofluorescência , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes
15.
Mol Ther Methods Clin Dev ; 21: 325-340, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33898631

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked progressive disease characterized by loss of dystrophin protein that typically results from truncating mutations in the DMD gene. Current exon-skipping therapies have sought to treat deletion mutations that abolish an open reading frame (ORF) by skipping an adjacent exon, in order to restore an ORF that allows translation of an internally deleted yet partially functional protein, as is seen with many patients with the milder Becker muscular dystrophy (BMD) phenotype. In contrast to that approach, skipping of one copy of a duplicated exon would be expected to result in a full-length transcript and production of a wild-type protein. We have developed an adeno-associated virus (AAV)-based U7snRNA exon-skipping approach directed toward exon 2, duplications of which represent 10% of all DMD duplication mutations. Deletion of exon 2 results in utilization of an exon 5 internal ribosome entry site (IRES) that allows translation beginning in exon 6 of a highly protective dystrophin protein, providing a wide therapeutic window for treatment. Both intramuscular and systemic administration of this vector in the Dup2 mouse model results in robust dystrophin expression and correction of muscle physiologic defects, allowing dose escalation to establish a putative minimal efficacious dose for a human clinical trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...