Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140463

RESUMO

Understanding the tolerance of plants to drought and their gradual response to lack of water is a multifaceted challenge that requires a combination of scientific research and technological innovation. Selecting naturally drought-tolerant plants and knowing their response to photosynthesis in a wide range of water availability opens a door to making decisions about the suitability of different cultivars to be implanted in specific geographical areas, based on their tolerance to drought and light absorption capacity. In this work, photosynthesis-light curves were carried out using a LiCor LI-6800 IRGA device, applying increasing light intensities to plants of 14 olive cultivars, either under control conditions (no water stress) or subject to moderate and severe water deficits. The plants were grown in a culture chamber under controlled conditions for photoperiod, air humidity, temperature, and carbon dioxide concentration. For each cultivar, the electronic transference ratio (ETR) in response to light was also obtained. Different equations were used to fit experimental data allowing us to calculate, with a regression coefficient above 0.95, different photosynthetic parameters such as the maximum photosynthetic capacity, the photosynthetic efficiency, the number of electrons or the number of photons to assimilate a molecule of CO2, and the effect of the lack of water on these parameters. This work represents the first contribution of the response to photosynthesis of many olive cultivars subjected to moderate and severe drought conditions. The parameters described, and the results provided, pave the road for subsequent work related to plant physiology and other areas of science and technology, and allow us to objectively compare the tolerance to water stress in these fourteen olive cultivars.

2.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501423

RESUMO

Paratylenchus species are obligate ectoparasitic nematodes on cultivated and wild herbaceous and woody plants occupying numerous soil categories. Several species may cause damage to several crops (viz. P. dianthus, P. enigmaticus, P. microdorus, P. hamatus and P. epacris on carnation, lettuce, rose and walnut, respectively). This investigation proves and emphasizes the relevance of applying integrative taxonomy for the accurate detection of Paratylenchus species in mountainous wild environments in the Malaga province, Southern Spain. This research analyzed 45 soil samples of maritimus pine and one of green heather in southern Spain and identified fourteen Paratylenchus species, two of them are described herein as new species (P. paraaonli sp. nov., P. plesiostraeleni sp. nov.), six of them were first reports for Spain (P. canchicus, P. nainianus, P. neonanus, P. salubris, Paratylenchus sp. 2 SAS, and P. wuae), and six species (P. caravaquenus, P. microdorus, P. nanus, P. neoamblycephalus, P. sheri, and P. variabilis) have been already reported in Spain. Accordingly, these data increase the biodiversity of pin nematodes in Spain comprising a total of 47 species (33.1% out of 142 total species of this genus). Phylogenetic analyses based on ribosomal and mitochondrial markers (D2-D3, ITS, and partial COI) resulted in a consistent position for the newly described Paratylenchus species in this study (P. plesiostraeleni sp. nov., P. paraaonli sp. nov.). Paratylenchus plesiostraeleni sp. nov. grouped in a separated subclade as unequivocal species from the P. straeleni-complex species (including P. straeleni and P. parastraeleni), and P. paraaonli sp. nov. clustered with P. vitecus, but clearly separate from this species. This study indicates that Paratylenchus species diversity in natural environments may be higher than expected, and this study may help in accurate identifications.

3.
Front Plant Sci ; 13: 991720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618643

RESUMO

Acute and early symptoms of forest dieback linked to climate warming and drought episodes have been reported for relict Abies pinsapo Boiss. fir forests from Southern Spain, particularly at their lower ecotone. Satellite, orthoimages, and field data were used to assess forest decline, tree mortality, and gap formation and recolonization in the lower half of the altitudinal range of A. pinsapo forests (850-1550 m) for the last 36 years (1985-2020). Field surveys were carried out in 2003 and in 2020 to characterize changes in stand canopy structure and mortality rates across the altitudinal range. Time series of the Normalized Difference Vegetation Index (NDVI) at the end of the dry season (derived from Landsat 5 and 7 imagery) were used for a Dynamic Factor Analysis to detect common trends across altitudinal bands and topographic solar incidence gradients (SI). Historical canopy cover changes were analyzed through aerial orthoimages classification. Here we show that extensive decline and mortality contrast to the almost steady alive basal area for 17 years, as well as the rising photosynthetic activity derived from NDVI since the mid-2000s and an increase in the forest canopy cover in the late years at mid and high altitudes. We hypothesized that these results suggest an unexpected resilience in A. pinsapo forests to climate change-induced dieback, that might be promoted by compensation mechanisms such as (i) recruitment of new A. pinsapo individuals; (ii) facilitative effects on such recruitment mediated by revegetation with other species; and (iii) a 'release effect' in which surviving trees can thrive with fewer resource competition. Future research is needed to understand these compensation mechanisms and their scope in future climate change scenarios.

4.
Sci Total Environ ; 765: 142752, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33082041

RESUMO

Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δ13C and total nitrogen δ15N of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δ13C and δ15N showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.


Assuntos
Carbono , Secas , Animais , Mudança Climática , Florestas , Cabras , Solo , Árvores
5.
Plants (Basel) ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255931

RESUMO

Dagger nematodes of the genus Xiphinema include a remarkable group of invertebrates of the phylum Nematoda comprising ectoparasitic animals of many wild and cultivated plants. Damage is caused by direct feeding on root cells and by vectoring nepoviruses that cause diseases on several crops. Precise identification of Xiphinema species is critical for launching appropriate control measures. We deciphered the cryptic diversity of the Xiphinema hispanum-species complex applying integrative taxonomical approaches that allowed us to verify a paradigmatic example of the morphostatic speciation and the description of a new species, Xiphinema malaka sp. nov. Detailed morphological, morphometrical, multivariate and genetic studies were carried out, and mitochondrial and nuclear haploweb analyses were used for species delimitation of this group. The new species belongs to morphospecies Group 5 from the Xiphinema nonamericanum-group species. D2-D3, ITS1, partial 18S, and partial coxI regions were used for inferring the phylogenetic relationships of X. malaka sp. nov. with other species within the genus Xiphinema. Molecular analyses showed a clear species differentiation not paralleled in morphology and morphometry, reflecting a clear morphostatic speciation. These results support the hypothesis that the biodiversity of dagger nematodes in southern Europe is greater than previously assumed.

6.
Glob Chang Biol ; 24(9): 4069-4083, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29768696

RESUMO

Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap," a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13 C, δ18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18 O and higher δ13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18 O and lower δ13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.


Assuntos
Mudança Climática , Pinus/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Longevidade , Nutrientes/metabolismo , Pinus/crescimento & desenvolvimento , Espanha
7.
Protoplasma ; 253(2): 403-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25894616

RESUMO

Peroxisomes are subcellular organelles characterized by a simple morphological structure but have a complex biochemical machinery involved in signaling processes through molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential component in cell redox homeostasis, and its regeneration is critical for reductive biosynthesis and detoxification pathways. Plants have several NADPH-generating dehydrogenases, with NADP-isocitrate dehydrogenase (NADP-ICDH) being one of these enzymes. Arabidopsis contains three genes that encode for cytosolic, mitochondrial/chloroplastic, and peroxisomal NADP-ICDH isozymes although the specific function of each of these remains largely unknown. Using two T-DNA insertion lines of the peroxisomal NADP-ICDH designated as picdh-1 and picdh-2, the data show that the peroxisomal NADP-ICDH is involved in stomatal movements, suggesting that peroxisomes are a new element in the signaling network of guard cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Isocitrato Desidrogenase/fisiologia , Peroxissomos/enzimologia , Estômatos de Plantas/enzimologia , Arabidopsis/ultraestrutura , Estômatos de Plantas/fisiologia
8.
Oecologia ; 171(4): 797-808, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23011850

RESUMO

Chronic atmospheric N deposition has modified relative N availability, altering the biogeochemical cycles of forests and the stoichiometry of nutrients in trees, inducing P limitation, and modifying the N:P ratios of plant biomass. This study examines how the variation in the foliar stoichiometry of Abies pinsapo across an N deposition gradient affects foliar traits and photosynthetic rate. We measured the maximum net assimilation rates (Amax) and the foliar nitrogen (N) and phosphorus (P) concentrations in A. pinsapo needles of five age classes. The leaf mass per area and photosynthetic N and P use efficiencies (PNUE and PPUE, respectively) were also estimated. The results from the N-saturated stand (Sierra Bermeja, B) differed from the comparable N-limited stands under investigation (Yunquera, Y, and Sierra Real, SR). The trees from Y and SR exhibited a reduction in the N content in older needles, whereas the foliar N concentration at the B site increased with needle age. N and P were positively correlated at Y and SR, but not at B, suggesting that the overload of N in the trees at site B has exceeded the homeostatic regulation capacity of the N-saturated stand in terms of foliar stoichiometry. A max and PNUE were correlated positively with P and negatively with the N/P ratio at the three study sites. The foliar N concentration was positively correlated with A max at Y and SR. However, this relationship was negative for the B site. These findings suggest that the nutritional imbalance caused by increased chronic deposition of N and an insufficient supply of P counteracts the potential increase in net photosynthesis induced by the accumulation of foliar N.


Assuntos
Abies/fisiologia , Nitrogênio/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Abies/química , Análise de Variância , Carbono/metabolismo , Processamento de Imagem Assistida por Computador , Espectrometria de Massas , Fósforo/metabolismo , Folhas de Planta/química , Espanha , Árvores/química
9.
Int J Mol Sci ; 13(5): 5645-5658, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754321

RESUMO

Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.


Assuntos
Variação Genética , Pinus/genética , Teorema de Bayes , DNA de Plantas/genética , Genética Populacional , Repetições de Microssatélites , Marrocos , Filogenia , Filogeografia , Análise de Componente Principal , Espanha
10.
Actas dermo-sifiliogr. (Ed. impr.) ; 95(1): 25-31, ene. 2004. ilus
Artigo em Es | IBECS | ID: ibc-28482

RESUMO

Introducción: La radiación ultravioleta es el principal factor etiopatogénico de las formas más frecuentes del cáncer de piel. En la provincia de Málaga es habitual la exposición solar continuada, sobre todo por tener una alta afluencia de turismo y, además, por ser una región donde se desarrollan gran número de actividades actínicas, tanto laborales como de ocio. Material y métodos: Se determinan series temporales de medida de radiación ultravioleta UVB, UVA y radiación fotosintéticamente activa (PAR) solar en Málaga (36,5° N-4,7° O) utilizando la recién constituida Red de Medida de Radiación Ultravioleta-Fotosintética de Andalucía (UVIFAN) (http://uvifan.scai.uma.es). Resultados: Se presentan ciclos anuales desde el año 1997 hasta finales de 2001 de la dosis diaria total para las tres bandas de radiación. Las dosis diarias máximas se observan en los meses estivales. El índice UV, que se alcanza en las horas centrales del día, osciló entre valores máximos de 7-8 durante los meses estivales y valores de 1-2 en los meses de invierno. Las relaciones de dosis PAR/UVA no varían a lo largo del año, aunque la relación UVB/UVA y UVB/PAR sigue un patrón anual de variación con valores máximos en los meses estivales, mientras que los valores más bajos se obtuvieron durante los meses invernales. Conclusiones: Estos datos confirman que en la provincia de Málaga, en los meses estivales existen niveles muy altos de radiación UVA, UVB y PAR, por lo que es de suma importancia adoptar medidas específicas de fotoprotección en esta época para evitar tanto las quemaduras a corto plazo, como la fotocarcinogénesis y el fotoenvejecimiento a largo plazo (AU)


Assuntos
Radiação , Raios Ultravioleta/classificação , Raios Ultravioleta/efeitos adversos , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Proteção Radiológica/métodos , Equipamentos de Laboratório , Radiometria , Radiometria/instrumentação , Radiometria/métodos , Cálculos , Neoplasias , Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...