Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(18): 184106, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568554

RESUMO

A natural range separation of the Coulomb hole into two components, one of them being predominant at long interelectronic separations (hcI ) and the other at short distances (hcII ), is exhaustively analyzed throughout various examples that put forward the most relevant features of this approach and how they can be used to develop efficient ways to capture electron correlation. We show that hcI , which only depends on the first-order reduced density matrix, can be used to identify molecules with a predominant nondynamic correlation regime and differentiate between two types of nondynamic correlation, types A and B. Through the asymptotic properties of the hole components, we explain how hcI can retrieve the long-range part of electron correlation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into spin components. We also analyze the simplest molecule presenting a dispersion interaction and how hcII helps identify it. The study of several atoms in different spin states reveals that the Coulomb hole components distinguish correlation regimes that are not apparent from the entire hole. The results of this work hold out the promise to aid in developing new electronic structure methods that efficiently capture electron correlation.

2.
J Phys Chem Lett ; 10(14): 4032-4037, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31276421

RESUMO

The correlation part of the pair density is separated into two components, one of them being predominant at short electronic ranges and the other at long ranges. The analysis of the intracular part of these components permits to classify molecular systems according to the prevailing correlation: dynamic or nondynamic. The study of the long-range asymptotics reveals the key component of the pair density that is responsible for the description of London dispersion forces and a universal decay with the interelectronic distance. The natural range-separation, the identification of the dispersion forces, and the kind of predominant correlation type that arise from this analysis are expected to be important assets in the development of new electronic structure methods in wave function, density, and reduced density-matrix functional theories.

3.
Inorg Chem ; 57(22): 14097-14105, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30383364

RESUMO

A systematic study of the performance of several density functional methodologies to study spin-crossover (SCO) on first row transition metal complexes is reported. All functionals have been tested against several mononuclear systems containing first row transition metal complexes and exhibiting spin-crossover. Among the tested functionals, the hybrid meta-GGA functional TPSSh with a triple-ζ basis set including polarization functions on all atoms provides the best results across different metals and oxidation states, and its performance in both predicting the correct ground state and the right energy window for SCO to occur is quite satisfactory. The effect of some additional contributions, such as zero-point energies, relativistic effects, and intramolecular dispersion interactions, has been analyzed. The reported strategy thus expands the use of the TPSSh functional to other metals and oxidation states other than FeII, making it the method of choice to study SCO in first row transition metal complexes. Additionally, the presented results validate the potential use of the TPSSh functional for virtual screening of new molecules with SCO, or its use in the study of the electronic structure of such systems.

4.
Phys Chem Chem Phys ; 19(35): 24029-24041, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28832052

RESUMO

The energy usually serves as a yardstick in assessing the performance of approximate methods in computational chemistry. After all, these methods are mostly used for the calculation of the electronic energy of chemical systems. However, computational methods should be also aimed at reproducing other properties, such strategy leading to more robust approximations with a wider range of applicability. In this study, we suggest a battery of ten tests with the aim to analyze density matrix functional approximations (DMFAs), including several properties that the exact functional should satisfy. The tests are performed on a model system with varying electron correlation, carrying a very small computational effort. Our results not only put forward a complete and exhaustive benchmark test for DMFAs, currently lacking, but also reveal serious deficiencies of existing approximations that lead to important clues in the construction of more robust DMFAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...