Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 13: 1284-1291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447564

RESUMO

In this work, the electronic transport properties of Te roll-like nanostructures were investigated in a broad temperature range by fabricating single-nanostructure back-gated field-effect-transistors via photolithography. These one-dimensional nanostructures, with a unique roll-like morphology, were produced by a facile synthesis and extensively studied by scanning and transmission electron microscopy. The nanostructures are made of pure and crystalline Tellurium with trigonal structure (t-Te), and exhibit p-type conductivity with enhanced field-effect hole mobility between 273 cm2/Vs at 320 K and 881 cm2/Vs at 5 K. The thermal ionization of shallow acceptors, with small ionization energy between 2 and 4 meV, leads to free-hole conduction at high temperatures. The free-hole mobility follows a negative power-law temperature behavior, with an exponent between -1.28 and -1.42, indicating strong phonon scattering in this temperature range. At lower temperatures, the electronic conduction is dominated by nearest-neighbor hopping (NNH) conduction in the acceptor band, with a small activation energy E NNH ≈ 0.6 meV and an acceptor concentration of N A ≈ 1 × 1016 cm-3. These results demonstrate the enhanced electrical properties of these nanostructures, with a small disorder, and superior quality for nanodevice applications.

2.
Nat Commun ; 12(1): 1995, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790286

RESUMO

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

3.
Nanotechnology ; 28(44): 445703, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28820739

RESUMO

An individual tin oxide (SnO2) nanobelt was connected in a back-gate field-effect transistor configuration and the conductivity of the nanobelt was measured at different temperatures from 400 K to 4 K, in darkness and under UV illumination. In darkness, the SnO2 nanobelts showed semiconductor behavior for the whole temperature range measured. However, when subjected to UV illumination the photoinduced carriers were high enough to lead to a metal-to-insulator transition (MIT), near room temperature, at T MIT = 240 K. By measuring the current versus gate voltage curves, and considering the electrostatic properties of a non-ideal conductor, for the SnO2 nanobelt on top of a gate-oxide substrate, we estimated the capacitance per unit length, the mobility and the density of carriers. In darkness, the density was estimated to be 5-10 × 1018 cm-3, in agreement with our previously reported result (Phys. Status Solid. RRL 6, 262-4 (2012)). However, under UV illumination the density of carriers was estimated to be 0.2-3.8 × 1019 cm-3 near T MIT, which exceeded the critical Mott density estimated to be 2.8 × 1019 cm-3 above 240 K. These results showed that the electrical properties of the SnO2 nanobelts can be drastically modified and easily tuned from semiconducting to metallic states as a function of temperature and light.

4.
Lasers Med Sci ; 31(7): 1309-16, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27365109

RESUMO

The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.


Assuntos
Implantes Dentários , Lasers Semicondutores/uso terapêutico , Peri-Implantite/radioterapia , Temperatura , Animais , Descontaminação/métodos , Suínos , Titânio/efeitos da radiação
5.
Nanoscale ; 5(14): 6439-44, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23740286

RESUMO

The electrical observation of energy sub-band formation in the electronic structure, that gives rise to the phenomenon of quantized transport is reported in tin oxide (SnO2) nanobelt back-gate field-effect transistors, at low temperatures. Sub-band formation was observed as current oscillations in the drain current vs. gate voltage characteristics, and was analyzed considering the nanobelt as a "quantum wire" with a rectangular cross-section and hard walls. The lateral quantum confinement in the nanowires created conditions for the successive filling of the first twelve electron energy sub-bands, as the gate voltage increases. When the source-drain voltage is changed, the oscillations are not dislocated with respect to the gate voltage indicating flat-band energies, and that the observations are incompatible with the phenomena of Coulomb blockade and tunnelling oscillations. The separation of the energy sub-bands was found to be in good agreement with the measured cross-section dimensions of the nanobelt and with the threshold temperature, since for T > 60 K the oscillations tend to vanish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...