Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann For Sci ; 79(1): 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370435

RESUMO

Key message: Managing forest residues according to the carbon content of the soil helps to minimize the ecological footprint of their removal. Context: In Mediterranean mountain ecosystems, unsustainable harvesting of wood residues might contribute to land degradation, carbon, and nutrient depletion in forest soils. Aims: This study aimed to assess the amount of forest biomass residues that should be left on-site to minimize the depletion of soil fertility. Methods: We estimated the availability of biomass residues in the public forest land of the Basilicata region of Southern Italy by collecting stand-scale inventory attributes from forest management plans. Subsequently, we quantified the amount of forest biomass residue released by implementing a scenario-based approach. Results: Approximately 5800 m3 year-1 of forest residues could be potentially available for bio-based industries at the regional scale within the next 10 years. Such residues mainly belong to broadleaved forest types, having a high variability in their soil organic stock (228.5-705.8 Mg C ha-1) and altitudinally spanning from 400 to 1500 m a.s.l. In these forests, the simulated scenarios displayed a wide range of average harvestable residues from 2.5 to 5.5 m3 ha-1, containing approximately 1.1 to 2.1 Mg ha-1 of organic carbon. Conclusion: Our study suggests that forest management plans are a useful source of information to estimate the available forest biomass residues consistently. In southern Mediterranean mountain forests, the management of forest residues according to soil carbon content helps to minimize the environmental impact and increase their sustainability.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33105565

RESUMO

The European Union's 2030 climate and energy policy and the 2030 Agenda for Sustainable Development underline the commitment to mitigate climate change and reduce its impacts by supporting sustainable use of resources. This commitment has become stricter in light of the ambitious climate neutrality target set by the European Green Deal for 2050. Water, Energy and Food are the key variables of the "Nexus Thinking" which face the sustainability challenge with a multi-sectoral approach. The aim of the paper is to show the methodological path toward the implementation of an integrated modeling platform based on the Nexus approach and consolidated energy system analysis methods to represent the agri-food system in a circular economy perspective (from the use of water, energy, biomass, and land to food production). The final aim is to support decision-making connected to climate change mitigation. The IEA-The Integrated MARKAL-EFOM System (TIMES) model generator was used to build up the Basilicata Water, Energy and Food model (TIMES-WEF model), which allows users a comprehensive evaluation of the impacts of climate change on the Basilicata agri-food system in terms of land use, yields and water availability and a critical comparison of these indicators in different scenarios. The paper focuses on the construction of the model's Reference Energy and Material System of the TIMES model, which integrates water and agricultural commodities into the energy framework, and on the results obtained through the calibration of the model ß version to statistical data on agricultural activities.


Assuntos
Agricultura , Mudança Climática , Indústria Alimentícia , Modelos Estatísticos , Agricultura/tendências , Alimentos/normas , Indústria Alimentícia/tendências , Água , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...