Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 92: 849-861, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184814

RESUMO

Materials and surfaces developed for dental implants need to withstand degradation processes that take place in the oral cavity. Therefore, the aim of the study was to develop and evaluate the topographical, mechanical, chemical, electrochemical and biological properties of Ti-xZr alloys (x = 5, 10, and 15 wt%) with two surface features (machined and double acid etched). Commercially pure titanium (cpTi) and Ti-6Al-4V alloy were used as controls. Surface characterization was performed using dispersive energy spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, profilometry and surface energy. The mechanical properties were assessed using Vickers microhardness, elastic modulus and stiffness. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). In addition, MC3T3-E1 cells were used to determine the impact of material and surface treatment on cell morphology by SEM analysis. Data were analyzed by two-way ANOVA and Bonferroni test (α = 0.05). Ti-Zr alloys showed lower surface roughness, elastic modulus and stiffness, as well as higher hardness and surface energy when compared to cpTi. Ti-Zr system increased the polarization resistance values and significantly decreased the capacitance, corrosion current density (icorr), and passivation current density (ipass) values. The acid treatment increased the resistance and corrosion potential of the oxide layer. SEM data analysis demonstrated that Ti-Zr alloys displayed normal cell attachment/spreading and slightly changed cell morphology in the double etched surface. In conclusion, Zr addition and surface treatment altered surface, mechanical, biological and electrochemical properties of Ti material.


Assuntos
Ligas/química , Ligas Dentárias/química , Implantes Dentários , Análise de Variância , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Corrosão , Eletroquímica , Camundongos
2.
Dent Mater ; 33(11): 1244-1257, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28778495

RESUMO

OBJECTIVE: The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. METHODS: The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). RESULTS: The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. SIGNIFICANCE: The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements.


Assuntos
Ligas Dentárias/síntese química , Implantes Dentários , Nióbio/química , Titânio/química , Zircônio/química , Albuminas/química , Materiais Biocompatíveis/síntese química , Módulo de Elasticidade , Eletroquímica , Dureza , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Difração de Raios X
3.
Materials (Basel) ; 7(1): 542-553, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28788473

RESUMO

The mechanical properties of Ti alloys are changed significantly with the addition of interstitial elements, such as oxygen. Because oxygen is a strong stabilizer of the α phase and has an effect on hardening in a solid solution, it has aroused great interest in the biomedical area. In this paper, Ti-Zr alloys were subjected to a doping process with small amounts of oxygen. The influence of interstitial oxygen in the structure, microstructure and some selected mechanical properties of interest for use as biomaterial and biocompatibility of the alloys were analyzed. The results showed that in the range of 0.02 wt% to 0.04 wt%, oxygen has no influence on the structure, microstructure or biocompatibility of the studied alloys, but causes hardening of the alloys, increasing the values of the microhardness and causing variation in the elasticity modulus values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...