Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15093, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064734

RESUMO

Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kane'ohe Bay, Hawai'i. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Havaí , Água do Mar
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544862

RESUMO

Ocean-warming and acidification are predicted to reduce coral reef biodiversity, but the combined effects of these stressors on overall biodiversity are largely unmeasured. Here, we examined the individual and combined effects of elevated temperature (+2 °C) and reduced pH (-0.2 units) on the biodiversity of coral reef communities that developed on standardized sampling units over a 2-y mesocosm experiment. Biodiversity and species composition were measured using amplicon sequencing libraries targeting the cytochrome oxidase I (COI) barcoding gene. Ocean-warming significantly increased species richness relative to present-day control conditions, whereas acidification significantly reduced richness. Contrary to expectations, species richness in the combined future ocean treatment with both warming and acidification was not significantly different from the present-day control treatment. Rather than the predicted collapse of biodiversity under the dual stressors, we find significant changes in the relative abundance but not in the occurrence of species, resulting in a shuffling of coral reef community structure among the highly species-rich cryptobenthic community. The ultimate outcome of altered community structure for coral reef ecosystems will depend on species-specific ecological functions and community interactions. Given that most species on coral reefs are members of the understudied cryptobenthos, holistic research on reef communities is needed to accurately predict diversity-function relationships and ecosystem responses to future climate conditions.


Assuntos
Ácidos/efeitos adversos , Antozoários/fisiologia , Biodiversidade , Mudança Climática , Recifes de Corais , Ecossistema , Estresse Fisiológico , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares
3.
J Hered ; 111(1): 70-83, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943081

RESUMO

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Assuntos
Especiação Genética , Filogeografia , Animais , Regiões Antárticas , Organismos Aquáticos , Peixes , Água Doce , Havaí , Invertebrados , Plantas
4.
PeerJ ; 7: e6371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746308

RESUMO

Neopetrosia proxima (Porifera: Demospongiae: Haplosclerida) is described as a morphologically variable sponge common on shallow reefs of the Caribbean. However, the range of morphological and reproductive variation within putative N. proxima led us to hypothesize that such variability may be indicative of cryptic species rather than plasticity. Using DNA sequences and morphological characters we confirmed the presence of three previously undescribed species of Neopetrosia. Morphological differences of each new congener were best resolved by partial gene sequences of the mitochondrial cytochrome oxidase subunit 1 over nuclear ones (18S rRNA and 28S rRNA). Several new characters for Neopetrosia were revealed by each new species. For example, N. dendrocrevacea sp. nov. and N. cristata sp. nov. showed the presence of grooves on the surface of the sponge body that converge at the oscula, and a more disorganized skeleton than previously defined for the genus. N. sigmafera sp. nov. adds the (1) presence of sigma microscleres, (2) significantly wider/longer oxeas (>200 µm), and (3) the presence of parenchymella larvae. Sampling of conspecifics throughout several locations in the Caribbean revealed larger spicules in habitats closer to the continental shelf than those in remote island locations. Our study highlights the importance of integrating molecular and morphological systematics for the discrimination of new Neopetrosia spp. despite belonging to one of several polyphyletic groups (families, genera) within the current definition of the order Haplosclerida.

6.
Gigascience ; 6(10): 1-7, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020741

RESUMO

Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.


Assuntos
Microbiota , Poríferos/microbiologia , Animais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
PLoS One ; 12(4): e0174816, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419173

RESUMO

The recently described epizoic sponge-sponge symbioses between Xestospongia deweerdtae and two species of Plakortis present an unusual series of sponge interactions. Sponges from the genus Plakortis are fierce allelopathic competitors, rich in cytotoxic secondary metabolites, and yet X. deweerdtae flourishes as an epizoic encrustation on Plakortis deweerdtaephila and Plakortis symbiotica. Our objective in this study was to evaluate the hypothesis that X. deweerdtae grows epizoic to these two species of Plakortis due to a shared chemical defense against predators. We collected free-living individuals of X. deweerdtae and symbiotic pairs from a wide geographical range to generate crude organic extracts and a series of polarity fractions from sponge extract. We tested the deterrency of these extracts against three common coral reef predators: the bluehead wrasse, Thalassoma bifasciatum, the Caribbean sharpnose puffer, Canthigaster rostrata, and the white spotwrist hermit crab, Pagurus criniticornis. While the chemical defenses of P. deweerdtaephila and P. symbiotica are more potent than those of X. deweerdtae, all of the sponge species we tested significantly deterred feeding in all three generalist predators. The free-living form of X. deweerdtae is mostly defended across the region, with a few exceptions. The associated form of X. deweerdtae is always defended, and both species of Plakortis are very strongly defended, with puffers refusing to consume extract-treated pellets until the extract was diluted to 1/256× concentration. Using diode-array high performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (LC-MS/IT-TOF), we found two secondary metabolites from P. deweerdtaephila, probably the cyclic endoperoxides plakinic acid I and plakinic acid K, in low concentrations in the associated-but not the free-living-form of X. deweerdtae, suggesting a possible translocation of defensive chemicals from the basibiont to the epibiont. Comparing the immense deterrency of Plakortis spp. extracts to the extracts of X. deweerdtae gives the impression that there may be some sharing of chemical defenses: one partner in the symbiosis is clearly more defended than the other and a small amount of its defensive chemistry may translocate to the partner. However, X. deweerdtae effectively deters predators with its own defensive chemistry. Multiple lines of evidence provide no support for the shared chemical defense hypothesis. Given the diversity of other potential food resources available to predators on coral reefs, it is improbable that the evolution of these specialized sponge-sponge symbioses has been driven by predation pressure.


Assuntos
Peixes/fisiologia , Plakortis/fisiologia , Comportamento Predatório/fisiologia , Simbiose , Xestospongia/fisiologia , Acetatos/administração & dosagem , Acetatos/análise , Acetatos/isolamento & purificação , Animais , Região do Caribe , Cromatografia Líquida de Alta Pressão , Recifes de Corais , Ecossistema , Comportamento Alimentar/fisiologia , Geografia , Espectrometria de Massas , Estrutura Molecular , Peróxidos/administração & dosagem , Peróxidos/análise , Peróxidos/isolamento & purificação , Plakortis/química , Plakortis/metabolismo , Xestospongia/química , Xestospongia/metabolismo
8.
Zootaxa ; 4178(2): 209-233, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27811721

RESUMO

The new discovery by Vicente et al. (2014) of specialized epizoic symbioses between sponges of the genera Plakortis and Xestospongia revealed the obligate interaction of two new Plakortis spp. associating with Xestospongia deweerdtae and a new Xestospongia sp. In this study we formally describe the two new Plakortis spp. as Plakortis deweerdtaephila sp. nov. (previously reported as Plakortis sp. 1), Plakortis symbiotica sp. nov. (previously reported as Plakortis sp. 2) and describe the new Xestospongia sp. epibiont as Haliclona (Halichoclona) plakophila sp. nov.  Plakortis deweerdtaephila associates only with X. deweerdtae, and has very small to large straight diods (24.2-233.7 µm long) and triods (26.4-102.6 µm long) that form large ectosomal circular meshes (114-329 µm diameter). P. symbiotica associates with both X. deweerdtae and H. plakophila, has larger curved diods (71.9-141.8 µm long) and triods (20.4-70.6 µm long) that form smaller ectosomal circular meshes (43-121 µm diameter) than P. deweerdtaephila. Phylogenetic analysis of cox1 and cob gene fragments revealed a strongly supported clade that grouped both Plakortis spp. nov. distantly from any other known Plakortis spp. H. plakophila is described as a thin encrusting veneer of tissue with occasional papillae, so far only found associated with P. symbiotica in La Parguera, Puerto Rico. Phylogenetic analysis of 18S rRNA and cox1 gene fragments place it distantly from any known clade of Haplosclerida. We found a new associated morphotype of X. deweerdtae from Bocas del Toro Panama, which completely overgrew P. deweerdtaephila. In addition, free-living morphotypes from Panama produce larger S-shaped and round bracket shaped strongyles never before observed for this species, leading us to redescribe X. deweerdtae. All X. deweerdtae morphotypes shared >99% sequence homology of cox1, 18S rRNA and 28S rRNA genes with the holotype of X. deweerdtae. This study highlights the highly variable morphological characters of X. deweerdtae influenced by lifestyle and environmental factors. This is also the first time that an obligate symbiosis with a heterospecific sponge is used as a key taxonomic character.


Assuntos
Haliclona/classificação , Plakortis/classificação , Animais , Região do Caribe , Haliclona/anatomia & histologia , Haliclona/genética , Filogenia , Plakortis/anatomia & histologia , Plakortis/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
9.
Mar Drugs ; 13(8): 4682-700, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26230704

RESUMO

During an investigation of new actinomycete species from Caribbean sponges for novel bioactive natural products, frigocyclinone (1), dimethyldehydrorabelomycin (3) and six new angucyclinone derivatives were isolated from Streptomyces sp. strain M7_15 associated with the sponge Scopalina ruetzleri. Of these, monacyclinones A-B (4-5) contain the core ring structure of dehydrorabelomycin (2) with the aminodeoxysugar found in frigocyclinone (1). Monacyclinone C (6) is a hydroxylated variant of frigocyclinone (1) and monacyclinone D (7) is a Baeyer Villiger derivative of (6) which also exists as the open chain hydrolysis product monacyclinone E (8). Monacyclinone F (9) contains two unique epoxide rings attached to the angucyclinone moiety and an additional aminodeoxysugar attached through an angular oxygen bond. All structures were confirmed through spectral analyses. Activity against rhabdomycosarcoma cancer cells (SJCRH30) after 48 h of treatment was observed with frigocyclinone (1; EC50 = 5.2 µM), monacyclinone C (6; 160 µM), monacyclinone E (8; 270 µM), and monacyclinone F (9; 0.73 µM). The strongest bioactivity against rhabdomycosarcoma cancer cells and gram-positive bacteria was exhibited by compound 9, suggesting that the extra aminodeoxysugar subunit is important for biological activity.


Assuntos
Antraquinonas/química , Poríferos/microbiologia , Streptomyces/química , Animais , Antraquinonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Região do Caribe , Linhagem Celular Tumoral , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Porto Rico
10.
PeerJ ; 3: e901, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945305

RESUMO

Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

11.
Front Microbiol ; 5: 561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389420

RESUMO

Sponges that harbor microalgal or, cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were successfully amplified from the corresponding gDNA and cDNA pools and sequenced by high throughput 454 amplicon sequencing. In both sponges, over half the nifH transcripts were classified as from cyanobacteria and the remainder from heterotrophic bacteria. We found various groups of bacteria actively expressing the nifH gene during the entire day-night cycle, an indication that the nitrogen fixation potential was fully exploited by different nitrogen fixing bacteria groups associated with their hosts. This study showed for the first time the dynamic changes in the activity of the diazotrophic bacterial communities in marine sponges. Our study expands understanding of the diazotrophic groups that contribute to the fixed nitrogen pool in the benthic community. Sponge bacterial community-associated diazotrophy may have an important impact on the nitrogen biogeochemical cycle in the coral reef ecosystem.

12.
PLoS One ; 9(3): e90517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618773

RESUMO

The bacterial communities of sponges have been studied using molecular techniques as well as culture-based techniques, but the communities described by these two methods are remarkably distinct. Culture-based methods describe communities dominated by Proteobacteria, and Actinomycetes while molecular methods describe communities dominated by predominantly uncultivated groups such as the Chloroflexi, Acidobacteria, and Acidimicrobidae. In this study, we used a wide range of culture media to increase the diversity of cultivable bacteria from the closely related giant barrel sponges, Xestospongia muta collected from the Florida Keys, Atlantic Ocean and Xestospongia testudinaria, collected from Indonesia, Pacific Ocean. Over 400 pure cultures were isolated and identified from X. muta and X. testudinaria and over 90 bacterial species were represented. Over 16,000 pyrosequences were analyzed and assigned to 976 OTUs. We employed both cultured-based methods and pyrosequencing to look for patterns of overlap between the culturable and molecular communities. Only one OTU was found in both the molecular and culturable communities, revealing limitations inherent in both approaches.


Assuntos
Bactérias/classificação , Bactérias/genética , Metagenoma , Microbiota , Poríferos/microbiologia , Animais , Bactérias/isolamento & purificação , Biodiversidade , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Simbiose
13.
J Org Chem ; 78(22): 11294-301, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24138557

RESUMO

Two new natural products, 3 and 4, and their predecessor 7-isocyanoisoneoamphilecta-1(14),15-diene (2), of the rare isoneoamphilectane class of marine diterpenes, along with the known amphilectane diterpenes 6-8, were isolated from the n-hexane extract of the marine sponge Svenzea flava collected at Great Inagua Island, Bahamas. The molecular structures of compounds 3 and 4 were established by spectroscopic (1D/2D NMR, IR, UV, HRMS) methods and confirmed by a series of chemical correlation studies. In a first ever case study of the assignment of the absolute configuration of a molecule based on the isoneoamphilectane carbon skeleton, the absolute configuration of compound 5 was established as 3S,4R,7S,8S,11R,12S,13R by application of vibrational circular dichroism (VCD). In vitro anti-TB screenings revealed that metabolites 2-4 and, in particular, semisynthetic analogue 5, are strong growth inhibitors of Mycobacterium tuberculosis H37Rv.


Assuntos
Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Poríferos/química , Animais , Antituberculosos/química , Antituberculosos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Dicroísmo Circular , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Vibração
14.
Mar Biotechnol (NY) ; 15(4): 413-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23344968

RESUMO

Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.


Assuntos
Actinobacteria/química , Biodiversidade , Produtos Biológicos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Poríferos/microbiologia , Actinobacteria/genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Filogenia , Porto Rico , Quinonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
15.
J Nat Prod ; 73(10): 1694-700, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20923180

RESUMO

Two new five-membered-ring polyketide endoperoxides, epiplakinic acid F methyl ester (1) and epiplakinidioic acid (3), and a peroxide-lactone, plakortolide J (2), were isolated from the Puerto Rican sponge Plakortis halichondrioides, along with two previously reported cyclic peroxides, 4 and 5. The structures of the new metabolites were determined by spectroscopic and chemical analyses. The absolute stereostructures of 1, 2, and 5 were determined by degradation reactions followed by application of Kishi's method for the assignment of absolute configuration of alcohols. Biological screening of cycloperoxides 1-5 and semisynthetic analogues 7-12 for cytotoxic activity against various human tumor cell lines revealed that compounds 3, 4, and 11 are very active. Upon assaying for antimalarial and antitubercular activity, some of the compounds tested showed strong activity against the pathogenic microbes Plasmodium falciparum and Mycobacterium tuberculosis.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Compostos Heterocíclicos com 2 Anéis/isolamento & purificação , Compostos Heterocíclicos com 2 Anéis/farmacologia , Peróxidos/isolamento & purificação , Peróxidos/farmacologia , Plakortis/química , Animais , Antimaláricos/química , Antituberculosos/química , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peróxidos/química , Plasmodium falciparum/efeitos dos fármacos , Porto Rico
16.
J Nat Prod ; 72(9): 1555-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19743810

RESUMO

Three new cyclic peptides, euryjanicins B (2), C (3), and D (4), have been isolated from the Puerto Rican marine sponge Prosuberites laughlini, and the structures were elucidated by chemical degradation, ESIMS/MS, and extensive 2D NMR methods. When tested against the National Cancer Institute 60 tumor cell line panel, all of the purified isolates displayed weak cytotoxicity.


Assuntos
Antineoplásicos/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Poríferos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Região do Caribe , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Prolina/química
17.
Tetrahedron Lett ; 50(32): 4571-4574, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20161148

RESUMO

A new proline-containing cycloheptapeptide, euryjanicin A (1), has been isolated from the marine sponge Prosuberites laughlini indigenous to Puerto Rico, and its structure established by an X-ray crystal structure determination. The absolute configuration of each amino acid residue was determined by Marfey's method.

18.
Lipids ; 42(11): 1047-53, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17710462

RESUMO

The phospholipid fatty acid composition of the Caribbean sponge Erylus goffrilleri is described for the first time. A total of 70 fatty acids with chain lengths between 13 and 29 carbons were identified in the sponge. Methyl-branched fatty acids predominated in E. goffrilleri suggesting the presence of a considerable number of bacterial symbionts. The novel fatty acids (5Z,9Z)-2-methoxy-5,9-hexadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-octadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-nonadecadienoic acid, and (5Z,9Z)-2-methoxy-5,9-eicosadienoic acid are described for the first time in the literature. In addition, the iso-methyl-branched fatty acids (9Z)-2-methoxy-15-methyl-9-hexadecenoic acid and (5Z,9Z)-2-methoxy-15-methyl-5,9-hexadecadienoic acid, also identified in E. goffrilleri, were identified for the first time in nature. Based on the identified metabolites it is proposed that the unprecedented biosynthetic sequence: i-17:1Delta9 --> 2-OMe-i-17:1Delta9 --> 2-OMe-i-17:2Delta5,9 might be responsible for the biosynthesis of the novel iso-alpha-methoxylated fatty acids in E. goffrilleri.


Assuntos
Ácidos Graxos/análise , Fosfolipídeos/análise , Poríferos/química , Animais , Bactérias/química , Esterificação , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Metilação , Simbiose
19.
Lipids ; 42(6): 519-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17520308

RESUMO

The cyclopropane fatty acids 17-methyl-trans-4,5-methyleneoctadecanoic acid, 18-methyl-trans-4,5-methylenenonadecanoic acid, and 17-methyl-trans-4,5-methylenenonadecanoic acid were characterized for the first time in nature in the phospholipids (mainly PE, PG and PS) of the hermit-crab sponge Pseudospongosorites suberitoides. Pyrrolidine derivatization was the key in identifying the position of the cyclopropyl and methyl groups in the acyl chains and (1)H NMR was used to determine the trans stereochemistry of the cyclopropane ring. The phospholipids from the sponge also contained an interesting series of iso-anteiso Delta(5,9) fatty acids with chain-lengths between 17 and 21 carbons, with the fatty acids (5Z,9Z)-18-methyl-5,9-nonadecadienoic acid and the (5Z,9Z)-17-methyl-5,9-nonadecadienoic acid being described for the first time in sponges. The anteiso alpha-methoxylated fatty acid 2-methoxy-12-methyltetradecanoic acid was also identified for the first time in nature in the phospholipids of this interesting marine sponge. The novel cyclopropyl fatty acids could have originated from the phospholipids of a cyanobacterium living in symbiosis with the sponge.


Assuntos
Ciclopropanos/química , Ciclopropanos/isolamento & purificação , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Fosfolipídeos/química , Poríferos/química , Poríferos/microbiologia , Animais , Região do Caribe , Cianobactérias/química , Cianobactérias/fisiologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Fosfolipídeos/isolamento & purificação , Poríferos/classificação , Pirrolidinas/química , Especificidade da Espécie , Ácidos Esteáricos/química , Ácidos Esteáricos/isolamento & purificação , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...