Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513610

RESUMO

How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.

2.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37818893

RESUMO

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Assuntos
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamanho do Órgão/genética , Gigantismo/genética , Locos de Características Quantitativas/genética , Solanum/genética , Frutas/genética
3.
J Exp Bot ; 74(17): 5124-5139, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37347477

RESUMO

The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.


Assuntos
MicroRNAs , Proteínas de Plantas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Hormônios , MicroRNAs/genética , MicroRNAs/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo
4.
Plant Mol Biol ; 111(4-5): 365-378, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587296

RESUMO

Tocopherols are potent membrane-bound antioxidant molecules that are paramount for plant physiology and also important for human health. In the past years, chlorophyll catabolism was identified as the primary source of phytyl diphosphate for tocopherol synthesis by the action of two enzymes, PHYTOL KINASE (VTE5) and PHYTHYL PHOSPHATE KINASE (VTE6) that are able to recycle the chlorophyll-derived phytol. While VTE5 and VTE6 were proven essential for tocopherol metabolism in tomato fruits, it remains unknown whether they are rate-limiting steps in this pathway. To address this question, transgenic tomato plants expressing AtVTE5 and AtVTE6 in a fruit-specific manner were generated. Although ripe transgenic fruits exhibited higher amounts of tocopherol, phytol recycling revealed a more intimate association with chlorophyll than with tocopherol content. Interestingly, protein-protein interactions assays showed that VTE5 and VTE6 are complexed, channeling free phytol and phytyl-P, thus mitigating their cytotoxic nature. Moreover, the analysis of tocopherol accumulation dynamics in roots, a chlorophyll-devoid organ, revealed VTE5-dependent tocopherol accumulation, hinting at the occurrence of shoot-to-root phytol trafficking. Collectively, these results demonstrate that phytol recycling is essential for tocopherol biosynthesis, even in chlorophyll-devoid organs, yet it is not the rate-limiting step for this pathway under normal growth conditions.


Assuntos
Solanum lycopersicum , Tocoferóis , Humanos , Tocoferóis/metabolismo , Frutas/metabolismo , Fitol/metabolismo , Clorofila/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
J Plant Physiol ; 280: 153859, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423448

RESUMO

Glandular trichomes produce and exude secondary metabolites, conferring insect resistance in many crop species. Whereas some of its wild relatives are insect-resistant, tomato (Solanum lycopersicum) is not. Identifying the genetic changes that altered trichome development and biochemistry during tomato domestication would contribute to breeding for insect resistance. A mutation in the HAIRS ABSENT (H) gene, which encodes a C2H2 zinc finger protein (ZFP8), leads to reduced trichome density. Several geographic accessions of S. pimpinellifolium, the wild ancestor of domesticated tomato, have glabrous organs that resemble the phenotype caused by h. Here, we investigated allelic diversity for H in tomato and S. pimpinellifolium accessions and their associated trichome phenotypes. We also evaluated how the developmental stage can affect trichome development in glabrous and non-glabrous plants. We found that glabrous accessions of S. pimpinellifolium have different ZFP8 nucleotide sequence changes, associated with altered trichome development and density. We also found that while the glabrous appearance of h mutants is caused by a lower density of long trichomes, the density of type-VI glandular trichomes is increased, particularly in the adult stages of plant development. These insights on the genetic control of trichome development may contribute to breeding for insect resistance in tomatoes and other crops.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Tricomas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Variação Genética
6.
Plant Mol Biol ; 110(3): 253-268, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35798935

RESUMO

KEY MESSAGE: SlBBX28 is a positive regulator of auxin metabolism and signaling, affecting plant growth and flower number in tomato B-box domain-containing proteins (BBXs) comprise a family of transcription factors that regulate several processes, such as photomorphogenesis, flowering, and stress responses. For this reason, attention is being directed toward the functional characterization of these proteins, although knowledge in species other than Arabidopsis thaliana remains scarce. Particularly in the tomato, Solanum lycopersicum, only three out of 31 SlBBX proteins have been functionally characterized to date. To deepen the understanding of the role of these proteins in tomato plant development and yield, SlBBX28, a light-responsive gene, was constitutively silenced, resulting in plants with smaller leaves and fewer flowers per inflorescence. Moreover, SlBBX28 knockdown reduced hypocotyl elongation in darkness-grown tomato. Analyses of auxin content and responsiveness revealed that SlBBX28 promotes auxin-mediated responses. Altogether, the data revealed that SlBBX28 promotes auxin production and signaling, ultimately leading to proper hypocotyl elongation, leaf expansion, and inflorescence development, which are crucial traits determining tomato yield.


Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Plant Physiol ; 177: 11-19, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25659332

RESUMO

Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.


Assuntos
Produtos Agrícolas/fisiologia , Solanum lycopersicum/fisiologia , Água/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genótipo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...