Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 87: 102324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290420

RESUMO

Wound repair, the closing of a hole, is inherently a physical process that requires the change of shape of materials, in this case, cells and tissues. Not only is efficient and accurate wound repair critical for restoring barrier function and reducing infection, but it is also critical for restoring the complex three-dimensional architecture of an organ. This re-sculpting of tissues requires the complex coordination of cell behaviours in multiple dimensions, in space and time, to ensure that the repaired structure can continue functioning optimally. Recent evidence highlights the importance of cell and tissue mechanics in 2D and 3D to achieve such seamless wound repair.


Assuntos
Cicatrização
2.
Cell Rep Methods ; 3(10): 100597, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37751739

RESUMO

Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.


Assuntos
Cistos , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Epitélio , Células Epiteliais
3.
Cell Syst ; 13(8): 631-643.e8, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35835108

RESUMO

Epithelial cell organization and the mechanical stability of tissues are closely related. In this context, it has been recently shown that packing optimization in bended or folded epithelia is achieved by an energy minimization mechanism that leads to a complex cellular shape: the "scutoid". Here, we focus on the relationship between this shape and the connectivity between cells. We use a combination of computational, experimental, and biophysical approaches to examine how energy drivers affect the three-dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic model that explains the 3D cellular connectivity. Then, we challenge it by experimentally reducing the cell adhesion. As a result, we observed an increment in the appearance of scutoids that correlated with a decrease in the energy barrier necessary to connect with new cells. We conclude that tubular epithelia satisfy a quantitative biophysical principle that links tissue geometry and energetics with the average cellular connectivity.


Assuntos
Células Epiteliais , Modelos Biológicos , Biofísica , Forma Celular , Epitélio
4.
Int J Pharm ; 608: 121058, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34461172

RESUMO

Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.


Assuntos
Antineoplásicos , Neuroblastoma , Antineoplásicos/farmacologia , Comunicação Celular , Matriz Extracelular , Humanos , Neuroblastoma/tratamento farmacológico , Microambiente Tumoral , Vitronectina
5.
Nat Commun ; 12(1): 3098, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035282

RESUMO

The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Neovascularização Patológica/genética , Placa Amiloide/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Vasos Sanguíneos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Placa Amiloide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
6.
Development ; 148(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408064

RESUMO

Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.


Assuntos
Epitélio/anatomia & histologia , Morfogênese , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Forma Celular , Humanos , Modelos Biológicos
7.
Bioinformatics ; 36(4): 1314-1316, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544932

RESUMO

SUMMARY: Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform Fiji. This makes EpiGraph very user friendly, with no programming skills required. AVAILABILITY AND IMPLEMENTATION: EpiGraph is available at https://imagej.net/EpiGraph and the code is accessible (https://github.com/ComplexOrganizationOfLivingMatter/Epigraph) under GPLv3 license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software
8.
Int J Cancer ; 146(2): 553-565, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173338

RESUMO

Tumors are complex networks of constantly interacting elements: tumor cells, stromal cells, immune and stem cells, blood/lympathic vessels, nerve fibers and extracellular matrix components. These elements can influence their microenvironment through mechanical and physical signals to promote tumor cell growth. To get a better understanding of tumor biology, cooperation between multidisciplinary fields is needed. Diverse mathematic computations and algorithms have been designed to find prognostic targets and enhance diagnostic assessment. In this work, we use computational digital tools to study the topology of vitronectin, a glycoprotein of the extracellular matrix. Vitronectin is linked to angiogenesis and migration, two processes closely related to tumor cell spread. Here, we investigate whether the distribution of this molecule in the tumor stroma may confer mechanical properties affecting neuroblastoma aggressiveness. Combining image analysis and graph theory, we analyze different topological features that capture the organizational cues of vitronectin in histopathological images taken from human samples. We find that the Euler number and the branching of territorial vitronectin, two topological features, could allow for a more precise pretreatment risk stratification to guide treatment strategies in neuroblastoma patients. A large amount of recently synthesized VN would create migration tracks, pinpointed by both topological features, for malignant neuroblasts, so that dramatic change in the extracellular matrix would increase tumor aggressiveness and worsen patient outcomes.


Assuntos
Neuroblastoma/etiologia , Neuroblastoma/genética , Vitronectina/genética , Algoritmos , Proliferação de Células/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neuroblastoma/patologia , Prognóstico , Risco , Células Estromais/patologia , Microambiente Tumoral/genética
9.
Nat Commun ; 9(1): 4210, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297704

RESUMO

The original version of this Article contained an error in ref. 39, which incorrectly cited 'Fristrom, D. & Fristrom, J. W. in The Development of Drosophila melanogaster (eds. Bate, M. & Martinez-Arias, A.) II, (Cold spring harbor laboratory press, 1993)'. The correct reference is 'Condic, M.L, Fristrom, D. & Fristrom, J.W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development 111: 23-33 (1991)'. Furthermore, the last sentence of the fourth paragraph of the introduction incorrectly omitted citation of work by Rupprecht et al. The correct citation is given below. These errors have now been corrected in both the PDF and HTML versions of the Article. Rupprecht, J.F., Ong, K.H., Yin, J., Huang, A., Dinh, H.H., Singh, A.P., Zhang, S., Yu, W. & Saunders, T.E. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol. Biol. Cell 28, 3582-3594 (2017).

10.
Nat Commun ; 9(1): 2960, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054479

RESUMO

As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term "scutoid". The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs.


Assuntos
Forma Celular , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/fisiologia , Modelos Biológicos , Animais , Fenômenos Biofísicos , Biologia Computacional , Drosophila , Feminino , Morfogênese , Glândulas Salivares/citologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...