Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 29(5): 100165, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797286

RESUMO

We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 µM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.

2.
ACS Cent Sci ; 9(5): 937-946, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252362

RESUMO

Dysregulation of protein-protein interactions (PPIs) commonly leads to disease. PPI stabilization has only recently been systematically explored for drug discovery despite being a powerful approach to selectively target intrinsically disordered proteins and hub proteins, like 14-3-3, with multiple interaction partners. Disulfide tethering is a site-directed fragment-based drug discovery (FBDD) methodology for identifying reversibly covalent small molecules. We explored the scope of disulfide tethering for the discovery of selective PPI stabilizers (molecular glues) using the hub protein 14-3-3σ. We screened complexes of 14-3-3 with 5 biologically and structurally diverse phosphopeptides derived from the 14-3-3 client proteins ERα, FOXO1, C-RAF, USP8, and SOS1. Stabilizing fragments were found for 4/5 client complexes. Structural elucidation of these complexes revealed the ability of some peptides to conformationally adapt to make productive interactions with the tethered fragments. We validated eight fragment stabilizers, six of which showed selectivity for one phosphopeptide client, and structurally characterized two nonselective hits and four fragments that selectively stabilized C-RAF or FOXO1. The most efficacious fragment increased 14-3-3σ/C-RAF phosphopeptide affinity by 430-fold. Disulfide tethering to the wildtype C38 in 14-3-3σ provided diverse structures for future optimization of 14-3-3/client stabilizers and highlighted a systematic method to discover molecular glues.

3.
J Am Chem Soc ; 142(31): 13283-13287, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32664726

RESUMO

MutY glycosylase excises adenines misincorporated opposite the oxidatively damaged lesion, 8-oxo-7,8-dihydroguanine (OG), to initiate base excision repair and prevent G to T transversion mutations. Successful repair requires MutY recognition of the OG:A mispair amidst highly abundant and structurally similar undamaged DNA base pairs. Herein we use a combination of in vitro and bacterial cell repair assays with single-molecule fluorescence microscopy to demonstrate that both a C-terminal domain histidine residue and the 2-amino group of OG base are critical for MutY detection of OG:A sites. These studies are the first to directly link deficiencies in MutY lesion detection with incomplete cellular repair. These results suggest that defects in lesion detection of human MutY (MUTYH) variants may prove predictive of early-onset colorectal cancer known an MUTYH-associated polyposis. Furthermore, unveiling these specific molecular determinants for repair makes it possible to envision new MUTYH-specific cancer therapies.


Assuntos
DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Histidina/metabolismo , DNA Glicosilases/química , Guanina/análise , Guanina/metabolismo , Humanos , Microscopia de Fluorescência , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...