Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 39: 448-460, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30522931

RESUMO

BACKGROUND: The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. METHODS: Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. FINDINGS: IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. INTERPRETATION: Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. FUND: Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Obesidade/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Peso Corporal , Linhagem Celular , Biologia Computacional/métodos , Modelos Animais de Doenças , Ingestão de Energia , Metabolismo Energético , Jejum/metabolismo , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Fenótipo , Análise de Sequência de RNA
2.
EBioMedicine ; 39: 436-447, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502051

RESUMO

BACKGROUND: Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. METHODS: The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. FINDINGS: IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. INTERPRETATION: IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. FUND: Sao Paulo Research Foundation grant 2013/07607-8.


Assuntos
Tecido Adiposo Marrom/citologia , Inflamação/patologia , Interleucina-10/genética , Mitocôndrias/patologia , Estremecimento/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Caspases/genética , Linhagem Celular , Temperatura Baixa , Biologia Computacional/métodos , Metabolismo Energético , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Desacopladora 1/metabolismo
3.
Mol Cell Endocrinol ; 460: 238-245, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760600

RESUMO

Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity.


Assuntos
Hipotálamo/patologia , Inflamação/patologia , Mitocôndrias/patologia , Obesidade/patologia , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , GTP Fosfo-Hidrolases/metabolismo , Hipotálamo/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Testes de Neutralização , Fator de Necrose Tumoral alfa/metabolismo
4.
Diabetes ; 65(3): 673-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26512023

RESUMO

Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss.


Assuntos
Glicemia/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Animais , Glicemia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Teste de Tolerância a Glucose , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Endocrinology ; 155(8): 2831-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24892821

RESUMO

In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.


Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/metabolismo , Neurônios/metabolismo , Fenótipo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Aumento de Peso , Redução de Peso
6.
J Neuroinflammation ; 9: 88, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564895

RESUMO

BACKGROUND: The histocompatibility complex (MHC) class I expression in the central nervous system (CNS) regulates synaptic plasticity events during development and adult life. Its upregulation may be associated with events such as axotomy, cytokine exposition and changes in neuron electrical activity. Since IFNγ is a potent inducer of the MHC I expression, the present work investigated the importance of this pro-inflammatory cytokine in the synaptic elimination process in the spinal cord, as well as the motor recovery of IFN⁻/⁻, following peripheral injury. METHODS: The lumbar spinal cords of C57BL/6J (wild type) and IFNγ⁻/⁻ (mutant) mice, subjected to unilateral sciatic nerve transection, were removed and processed for immunohistochemistry and real time RT-PCR, while the sciatic nerves from animals subjected to unilateral crush, were submitted to immunohistochemistry and electron microscopy for counting of the axons. Gait recovery was monitored using the Cat Walk system. Newborn mice astrocyte primary cultures were established in order to study the astrocytic respose in the absence of the IFNγ expression. RESULTS: IFNγ⁻/⁻ mutant mice showed a decreased expression of MHC I and ß2-microglobulin mRNA coupled with reduced synaptophysin immunolabelling in the lesioned spinal cord segment. Following unilateral nerve transection, the Iba-1 (ionized calcium binding adaptor molecule 1) and glial fibrillary acid protein (GFAP) reactivities increased equally in both strains. In vitro, the astrocytes demonstrated similar GFAP levels, but the proliferation rate was higher in the wild type mice. In the crushed nerves (distal stump), neurofilaments and p75NTR immunolabeling were upregulated in the mutant mice as compared to the wild type and an improvement in locomotor recovery was observed. CONCLUSION: The present results show that a lack of IFNγ affects the MHC I expression and the synaptic elimination process in the spinal cord. Such changes, however, do not delay peripheral nerve regeneration after nerve injury.


Assuntos
Regulação para Baixo/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/deficiência , Neuropatia Ciática/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Regulação para Baixo/genética , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Interferon gama/líquido cefalorraquidiano , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa/métodos , Regeneração Nervosa/genética , Regeneração Nervosa/imunologia , Neuropatia Ciática/genética , Neuropatia Ciática/fisiopatologia , Medula Espinal/imunologia , Sinapses/genética
7.
Int J Biol Sci ; 7(8): 1188-202, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043176

RESUMO

The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05 mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Genes MHC Classe I/efeitos dos fármacos , Peptídeos/farmacologia , Medula Espinal/citologia , Sinapses/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting , Feminino , Genes MHC Classe I/genética , Acetato de Glatiramer , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Peptídeos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Sinapses/ultraestrutura
8.
J Neuroinflammation ; 7: 77, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21073708

RESUMO

BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine, which may be up-regulated after trauma to the peripheral or central nervous system. Such changes include reactive gliosis and synaptic plasticity that are considered important responses to the proper regenerative response after injury. Also, IFNγ is involved in the upregulation of the major histocompatibility complex class I (MHC class I), which has recently been shown to play an important role in the synaptic plasticity process following axotomy. There is also evidence that IFNγ may interfere in the differentiation and survival of neuronal cells. However, little is known about the effects of IFNγ absence on spinal cord neurons after injury. METHODS: We performed a unilateral sciatic nerve transection injury in C57BL/6J (wild type) and IFNγ-KO (mutant) mice and studied motoneuron morphology using light and electron microscopy. One week after the lesion, mice from both strains were sacrificed and had their lumbar spinal cords processed for histochemistry (n = 5 each group) and transmission electron microscopy (TEM, n = 5 each group). Spinal cord sections from non-lesioned animals were also used to investigate neuronal survival and the presence of apoptosis with TUNEL and immunohistochemistry. RESULTS: We find that presumed motoneurons in the lower lumbar ventral horn exhibited a smaller soma size in the IFNγ-KO series, regardless of nerve lesion. In plastic embedded sections stained with toluidine blue, the IFNγ-KO mice demonstrated a greater proportion of degenerating neurons in the ventral horn when compared to the control series (p < 0.05). Apoptotic death is suggested based on TUNEL and caspase 3 immunostaining. A sciatic nerve axotomy did not further aggravate the neuronal loss. The cellular changes were supported by electron microscopy, which demonstrated ventral horn neurons exhibiting intracellular vacuoles as well as degenerating nuclei and cytoplasm in the IFNγ-KO mice. Adjacent glial cells showed features suggestive of phagocytosis. Additional ultrastructural studies showed a decreased number of pre-synaptic terminals apposing to motoneurons in mutant mice. Nevertheless, no statistical difference regarding the input covering could be detected among the studied strains. CONCLUSION: Altogether, these results suggest that IFNγ may be neuroprotective and its absence results in neuronal death, which is not further increased by peripheral axotomy.


Assuntos
Interferon gama/imunologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Medula Espinal/imunologia , Medula Espinal/patologia , Animais , Apoptose , Axotomia , Humanos , Interferon gama/genética , Vértebras Lombares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/imunologia , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Fármacos Neuroprotetores/imunologia , Nervo Isquiático/patologia , Nervo Isquiático/cirurgia , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...