Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(10): 1404-1410, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849541

RESUMO

12-Thiazole abietanes are highly selective reversible inhibitors of hABHD16A that could potentially alleviate neuroinflammation. In this study, we used synthetic chemistry, competitive activity-based protein profiling, and computational methodologies to try to establish relevant structural determinants of activity and selectivity of this class of compounds for inhibiting ABHD16A over ABHD12. Five compounds significantly inhibited hABHD16A but also very efficiently discriminated between inhibition of hABHD16A and hABHD12, with compound 35 being the most effective, at 100 µM (55.1 ± 8.7%; p < 0.0001). However, an outstanding switch in the selectivity toward ABHD12 was observed in the presence of a ring A ester, if the C2' position of the thiazole ring possessed a 1-hydroxyethyl group, as in compound 28. Although our data were inconclusive as to whether the observed enzyme inhibition is allosteric or not, we anticipate that the structure-activity relationships presented herein will inspire future drug discovery efforts in this field.

2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983077

RESUMO

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.


Assuntos
Aquaporina 3 , Aquaporinas , Humanos , Aquaporina 3/química , Simulação de Acoplamento Molecular , Glicerol/química , Aquaporinas/química , Água/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834620

RESUMO

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Currently, more than 2100 variants have been identified in the gene, with a large number being very rare. The approval of modulators that act on mutant CFTR protein, correcting its molecular defect and thus alleviating the burden of the disease, revolutionized the field of CF. However, these drugs do not apply to all patients with CF, especially those with rare mutations-for which there is a lack of knowledge on the molecular mechanisms of the disease and the response to modulators. In this work, we evaluated the impact of several rare putative class II mutations on the expression, processing, and response of CFTR to modulators. Novel cell models consisting of bronchial epithelial cell lines expressing CFTR with 14 rare variants were created. The variants studied are localized at Transmembrane Domain 1 (TMD1) or very close to the signature motif of Nucleotide Binding Domain 1 (NBD1). Our data show that all mutations analyzed significantly decrease CFTR processing and while TMD1 mutations respond to modulators, those localized in NBD1 do not. Molecular modeling calculations confirm that the mutations in NBD1 induce greater destabilization of CFTR structure than those in TMD1. Furthermore, the structural proximity of TMD1 mutants to the reported binding site of CFTR modulators such as VX-809 and VX-661, make them more efficient in stabilizing the CFTR mutants analyzed. Overall, our data suggest a pattern for mutation location and impact in response to modulators that correlates with the global effect of the mutations on CFTR structure.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Sítios de Ligação , Mutação , Modelos Moleculares , Benzodioxóis/farmacologia
4.
Front Chem ; 11: 1322628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260042

RESUMO

Acquired resistance to drugs that modulate specific protein functions, such as the human proteasome, presents a significant challenge in targeted therapies. This underscores the importance of devising new methodologies to predict drug binding and potential resistance due to specific protein mutations. In this work, we conducted an extensive computational analysis to ascertain the effects of selected mutations (Ala49Thr, Ala50Val, and Cys52Phe) within the active site of the human proteasome. Specifically, we sought to understand how these mutations might disrupt protein function either by altering protein stability or by impeding interactions with a clinical administered drug. Leveraging molecular dynamics simulations and molecular docking calculations, we assessed the effect of these mutations on protein stability and ligand affinity. Notably, our results indicate that the Cys52Phe mutation critically impacts protein-ligand binding, providing valuable insights into potential proteasome inhibitor resistance.

5.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366446

RESUMO

African swine fever virus (ASFV) is the etiological agent of a highly contagious, hemorrhagic infectious swine disease, with a tremendous sanitary and economic impact on a global scale. Currently, there are no globally available vaccines or treatments. The p10 protein, a structural nucleoprotein encoded by ASFV, has been previously described as capable of binding double-stranded DNA (dsDNA), which may have implications for viral replication. However, the molecular mechanism that governs this interaction is still unknown, mostly due to the lack of a structural model for this protein. In this work, we have generated an ab initio model of the p10 protein and performed extensive structural characterization, using molecular dynamics simulations to identify the motifs and residues regulating DNA recognition. The helix-turn-helix motif identified at the C-terminal region of the protein was shown to be crucial to the dsDNA-binding efficiency. As with other DNA-binding proteins, two distinct serine and lysine-rich regions found in the two helices were identified as key players in the binding to DNA, whose importance was later validated using experimental binding assays. Altogether, these findings may contribute to a better understanding of the p10 function in ASFV replication.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Nucleoproteínas/metabolismo , Replicação Viral , DNA/metabolismo
6.
J Chem Inf Model ; 62(12): 3034-3042, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35697029

RESUMO

Membrane pan-assay interference compounds (PAINS) are a class of molecules that interact nonspecifically with lipid bilayers and alter their physicochemical properties. An early identification of these compounds avoids chasing false leads and the needless waste of time and resources in drug discovery campaigns. In this work, we optimized an in silico protocol on the basis of umbrella sampling (US)/molecular dynamics (MD) simulations to discriminate between compounds with different membrane PAINS behavior. We showed that the method is quite sensitive to membrane thickness fluctuations, which was mitigated by changing the US reference position to the phosphate atoms of the closest interacting monolayer. The computational efficiency was improved further by decreasing the number of umbrellas and adjusting their strength and position in our US scheme. The inhomogeneous solubility-diffusion model (ISDM) used to calculate the membrane permeability coefficients confirmed that resveratrol and curcumin have distinct membrane PAINS characteristics and indicated a misclassification of nothofagin in a previous work. Overall, we have presented here a promising in silico protocol that can be adopted as a future reference method to identify membrane PAINS.


Assuntos
Descoberta de Drogas , Bicamadas Lipídicas , Difusão , Descoberta de Drogas/métodos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Permeabilidade
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562892

RESUMO

Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene, PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational stability of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches have been developed to treat the more severe manifestations of the disorder, but they are either not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV complex, we design a new generation of compound IV-analogues with a higher affinity for the enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence between the calculated alchemical binding free energies and the experimentally determined ΔΔGb values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat PKU using the X-ray structure of their complexes with the target PAH enzyme.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Calorimetria , Humanos , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilcetonúrias/metabolismo , Dobramento de Proteína
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35337098

RESUMO

Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.

9.
ACS Synth Biol ; 10(11): 3209-3235, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736321

RESUMO

SARS-CoV-2 triggered a worldwide pandemic disease, COVID-19, for which an effective treatment has not yet been settled. Among the most promising targets to fight this disease is SARS-CoV-2 main protease (Mpro), which has been extensively studied in the last few months. There is an urgency for developing effective computational protocols that can help us tackle these key viral proteins. Hence, we have put together a robust and thorough pipeline of in silico protein-ligand characterization methods to address one of the biggest biological problems currently plaguing our world. These methodologies were used to characterize the interaction of SARS-CoV-2 Mpro with an α-ketoamide inhibitor and include details on how to upload, visualize, and manage the three-dimensional structure of the complex and acquire high-quality figures for scientific publications using PyMOL (Protocol 1); perform homology modeling with MODELLER (Protocol 2); perform protein-ligand docking calculations using HADDOCK (Protocol 3); run a virtual screening protocol of a small compound database of SARS-CoV-2 candidate inhibitors with AutoDock 4 and AutoDock Vina (Protocol 4); and, finally, sample the conformational space at the atomic level between SARS-CoV-2 Mpro and the α-ketoamide inhibitor with Molecular Dynamics simulations using GROMACS (Protocol 5). Guidelines for careful data analysis and interpretation are also provided for each Protocol.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/química , Proteínas Virais/química , Antivirais/uso terapêutico , Humanos , Ligantes
10.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358095

RESUMO

G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen increases compounds' ability to selectively stabilize G4s compared to duplex DNA, with a preference for parallel structures. Among these, compounds having a relative 1,3-position between the charged methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More interestingly, these ligands showed different capacities to selectively block DNA polymerization in a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic simulations with the parallel G4 formed by a 21-nt sequence present in k-RAS gene promoter, showed that the relative spatial orientation of the two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding to G4s.

11.
Methods Mol Biol ; 2315: 263-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302681

RESUMO

Pan-assay interference compounds (PAINS) are promiscuous molecules with multiple behaviors that interfere with assay readouts. Membrane PAINS are a subset of these compounds that influence the function of membrane proteins by nonspecifically perturbing the lipid membranes that surround them. Here, we describe a computational protocol to identify potential membrane PAINS molecules by calculating the effect that a given compound has on the bilayer deformation propensity.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo
12.
Langmuir ; 35(20): 6771-6781, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31006246

RESUMO

Catechins are molecules with potential use in different pathologies such as diabetes and cancer, but their pharmaceutical applications are often hindered by their instability in the bloodstream. This issue can be circumvented using liposomes as their nanocarriers for in vivo delivery. In this work, we studied the molecular details of (-)-epigallocatechin-3-gallate (EGCG) interacting with 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) monolayer/bilayer systems to understand the catechin loading ability and liposome stability, using experimental and computational techniques. The molecular dynamics simulations show the EGCG molecules deep inside the lipid bilayer, positioned below the lipid ester groups, generating a concentration-dependent lipid condensation. This effect was also inferred from the surface pressure isotherms of DMPC monolayers. In the polarization-modulated infrared reflection absorption spectra assays, the predominant effect at higher concentrations of EGCG (e.g., 20 mol %) was an increase in lipid tail disorder. The steady-state fluorescence data confirmed this disordered state, indicating that the catechin-induced liposome aggregation outweighs the condensation effects. Therefore, by adding more than 10 mol % EGCG to the liposomes, a destabilization of the vesicles occurs with the ensuing release of entrapped catechins. The loading capacity for DMPC seems to be limited by its disordered lipid arrangements, typical of a fluid phase. To further increase the clinical usefulness of liposomes, lipid bilayers with more stable and organized assemblies should be employed to avoid aggregation at large concentrations of catechin.


Assuntos
Catequina/análogos & derivados , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Catequina/química , Lipossomos
13.
J Chem Theory Comput ; 14(11): 5823-5833, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30354115

RESUMO

With the recent increase in computing power, the molecular modeling community is now more focused on improving the accuracy and overall quality of biomolecular simulations. For the available simulation packages, force fields, and all other associated methods used, this relates to how well they describe the conformational space and thermodynamic properties of a biomolecular system. The parameter sets of GROMOS force fields have been parametrized and validated with the reaction field (RF) method using charge groups and a twin-range cutoff scheme (0.8/1.4 nm). However, the most recent versions of GROMACS (since v.2016) discontinued the support for charge groups. To take full advantage of the newer and faster versions of this software package with GROMOS 54A7 and RF, we need to evaluate the impact of using a single cutoff scheme (vs twin-range) and of using the Verlet list update method (which is atomistic) compared to the group-based cutoff scheme. Our results show that the GROMOS 54A7 force field seems consistent with a single cutoff, since the resulting conformation and protonation ensembles were indistinguishable. The GROMOS parametrization procedure was also reproduced using an atomistic cutoff scheme, and we have observed that the hydration free energy values of small amino acid side-chain analogues were similar to the ones obtained with the group-based protocol. We do observe a small impact of the atomistic cutoff scheme in the conformational space of the model systems studied (G1-PAMAM and DMPC). However, since the structural properties of these systems are well converged for the cutoff range used (1.4-2.0 nm), unlike with the group-based cutoff schemes, we are confident that the atomistic cutoff can be adopted with RF for MD and constant-pH MD biomolecular simulations using the GROMOS 54A7 force field.

14.
Forensic Sci Int ; 290: 146-156, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30036736

RESUMO

The emergence of potentially dangerous new psychoactive substances (NPS) imposes enormous challenges on forensic laboratories regarding their rapid and unambiguous identification. Access to comprehensive databases is essential for a quick characterization of these substances, allowing them to be categorized according to national and international legislations. In this work, it is reported the synthesis and structural characterization by NMR and MS of a library encompassing 21 cathinones, 4 of which are not yet reported in the literature, but with structural characteristics that make them a target for clandestine laboratories. This in-house library will be an important tool accessible to forensic laboratories, for the quick identification of seized NPS. The in vitro cytotoxicity of all cathinones was assessed in HepG2 cells, to have a preliminary but effective indication of their human hepatotoxicity potential. The two new cathinones DMB (8) and DMP (9) were the more cytotoxic, followed by the already seized mephedrone (2), 3,4-DMMC (3), 4-MDMC (7), NEB (12) with EC50 values ranging from 0.81mM for (3) to 1.28mM for (2). Results suggest an increase of cytotoxicity with the increase of the chain length of the acyl moiety and with the substitution (with one or two methyl groups) in the aromatic ring. The nature of the amine moiety seems to play only a minor role in the cytotoxic effect. Molecular dynamics simulations were performed to evaluate the molecular details related with the observed cytotoxicities. Although these studies indicated that cathinones are able to cross lipid bilayers with relative ease, when in their neutral forms, it was observed only a partial correlation between lipophilicity and cytotoxicity, indicating that membrane trafficking may not be the only key factor influencing the bioactivity of these compounds. This work is a valuable contribution to the forensic science field since a quick identification of novel cathinones is urgent to match their rapid increase in the market.


Assuntos
Alcaloides/síntese química , Drogas Desenhadas/síntese química , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas , Toxicologia Forense/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
15.
Mol Pharm ; 14(12): 4597-4605, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29091448

RESUMO

Tuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N'-acylated INH derivative with a long alkyl chain (INH-C10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N'-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl-NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s-1), compared with INH-C2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (S315T and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/análogos & derivados , Pró-Fármacos/farmacologia , Tuberculose/tratamento farmacológico , Acilação , Antituberculosos/química , Proteínas de Bactérias/genética , Catalase/genética , Farmacorresistência Bacteriana/genética , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mutação , Mycobacterium tuberculosis/fisiologia , NAD/farmacologia , Peroxidase/genética , Pró-Fármacos/química , Tuberculose/microbiologia
16.
Arch Pharm Res ; 40(11): 1278-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28936788

RESUMO

Bioactive compounds, such as isorhamnetin and piscidic acid, were obtained from decoctions of cladodes (stem pads from Opuntia ficus-indica). The effect of these phenolic compounds, in a fiber-free extract, were evaluated as inhibitors of cholesterol permeation through a Caco-2 cell monolayer and as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. A reduction of 38% in cholesterol permeation through the Caco-2 cell monolayer was obtained, and the phenolic compounds all permeated between 6 and 9%. A mixture of these compounds showed an IC50 of 20.3 µg/mL as an enzyme inhibitor, whereas piscidic acid alone showed an IC50 of 149.6 µg/mL; this was slightly outperformed by the isorhamnetin derivatives. Docking studies confirmed that both piscidic acid and isorhamnetin derivatives, present in the decoction, could adequately bind to the enzyme active site. These results reveal that O. ficus-indica, and cladodes derived there from, is a promising plant for use in the development of new functional foods and pharmaceutical products.


Assuntos
Hidroxibenzoatos/farmacologia , Opuntia/química , Extratos Vegetais/farmacologia , Quercetina/análogos & derivados , Acil Coenzima A/efeitos dos fármacos , Acil Coenzima A/metabolismo , Células CACO-2 , Colesterol/sangue , Células Hep G2 , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Permeabilidade , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia
17.
J Mol Biol ; 428(23): 4686-4707, 2016 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-27725182

RESUMO

Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-ß-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a µ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Oxirredutases/química , Fatores de Transcrição/química , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Fatores de Transcrição/metabolismo
18.
Blood Cells Mol Dis ; 60: 18-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27519939

RESUMO

Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/genética , Mutação da Fase de Leitura , Glucose-6-Fosfato Isomerase/genética , Mutação de Sentido Incorreto , Domínio Catalítico , Humanos , Modelos Moleculares , Portugal , Conformação Proteica , Análise de Sequência de DNA
19.
Sci Rep ; 6: 28099, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302370

RESUMO

During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide's free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies.


Assuntos
Vírus da Influenza A/fisiologia , Mutação , Peptídeos/química , Peptídeos/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Espectrometria de Fluorescência , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Internalização do Vírus
20.
J Chem Inf Model ; 55(4): 795-805, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826469

RESUMO

Influenza virus is one of the most devastating human pathogens. In order to infect host cells, this virus fuses its membrane with the host membrane in a process mediated by the glycoprotein hemagglutinin. During fusion, the N-terminal region of hemagglutinin, which is known as the fusion peptide (FP), inserts into the host membrane, promoting lipid mixing between the viral and host membranes. Therefore, this peptide plays a key role in the fusion process, but the exact mechanism by which it promotes lipid mixing is still unclear. To shed light into this matter, we performed molecular dynamics (MD) simulations of the influenza FP in different environments (water, dodecylphosphocholine (DPC) micelles, and a dimyristoylphosphatidylcholine (DMPC) membrane). While in pure water the peptide lost its initial secondary structure, in simulations performed in the presence of DPC micelles it remained stable, in agreement with previous experimental observations. In simulations performed in the presence of a preassembled DMPC bilayer, the peptide became unstructured and was unable to insert into the membrane as a result of technical limitations of the method used. To overcome this problem, we used a self-assembly strategy, assembling the membrane together with the peptide. These simulations revealed that the peptide can adopt a membrane-spanning conformation, which had not been predicted by previous MD simulation studies. The peptide insertion had a strong effect on the membrane, lowering the bilayer thickness, disordering nearby lipids, and promoting lipid tail protrusion. These results contribute to a better understanding of the role of the FP in the fusion process.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Orthomyxoviridae , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Membrana Celular/química , Dimiristoilfosfatidilcolina/metabolismo , Bicamadas Lipídicas/química , Micelas , Ligação Proteica , Conformação Proteica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...