Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269497

RESUMO

SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20207472

RESUMO

BackgroundSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing the rationale for administration of plasma containing SARS-CoV-2 neutralizing antibodies (nAb) as a treatment for COVID-19. The clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood. MethodsAdults with virologically-documented SARS-CoV-2 infection in a convalescent plasma donor screening program were tested for serum IgG to SARS-CoV-2 spike protein S1 domain, nucleoprotein (NP), and for nAb. ResultsAmongst 250 consecutive persons studied a median of 67 days since symptom onset, 243/250 (97%) were seropositive on one or more assays. Sixty percent of donors had nAb titers [≥]1:80. Correlates of higher nAb titer included older age (adjusted OR [AOR] 1.03/year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during acute illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic (ROC) analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. NAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range, 77-120) apart (P<0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses. ConclusionsNab titers correlated with COVID-19 severity, age, and sex. Standard commercially available SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels were found to decline and a small proportion of COVID-19 survivors lack adaptive immune responses.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20145003

RESUMO

BackgroundTissue inflammation is associated with organ dysfunction and death in Covid-19. The efficacy of dexamethasone in preventing mortality in critical Covid-19 suggests that inflammation has a causal role in death. Whether this deleterious inflammation is a direct response to the presence of SARS-CoV-2, or an independent immuno-pathologic process, is unknown. MethodsTissue was acquired from detailed post-mortem examinations conducted on 11 well characterised hospitalised patients with fatal Covid-19. SARS-CoV-2 organotropism was mapped at an organ level by multiplex PCR and sequencing, with cellular resolution achieved by in situ viral spike (S) protein detection. Histological evidence of inflammation and organ injury was systematically examined, and the pulmonary immune response characterized with multiplex immunofluorescence. FindingsSARS-CoV-2 was detected across a wide variety of organs, most frequently in the respiratory tract but also in numerous extra-pulmonary sites. Minimal histological evidence of inflammation was identified in non-pulmonary organs despite frequent detection of viral RNA and protein. At a cellular level, viral protein was identified without adjacent inflammation in the intestine, liver and kidney. Severe inflammatory change was restricted to the lung and reticulo-endothelial system. Diffuse alveolar damage, pulmonary thrombi and a monocyte/myeloid-predominant vasculitis were the predominant pulmonary findings, though there was not a consistent association between viral presence and either the presence or nature of the inflammatory response within the lung. Immunophenotyping revealed an influx of macrophages, monocytes and T cells into pulmonary parenchyma. Bone marrow examination revealed plasmacytosis, erythroid dysplasia and iron-laden macrophages. Plasma cell excess was also present in lymph node, spleen and lung. These stereotyped reticulo-endothelial responses occurred largely independently of the presence of virus in lymphoid tissues. ConclusionsTissue inflammation and organ dysfunction in fatal Covid-19 do not map to the tissue and cellular distribution of SARS-CoV-2, demonstrating tissue-specific tolerance. We conclude that death in Covid-19 is primarily a consequence of immune-mediated, rather than pathogen-mediated, organ inflammation and injury. FundingThe Chief Scientist Office, LifeArc, Medical Research Scotland, UKRI (MRC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...