Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 325(3): H592-H600, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539470

RESUMO

Endothelial dysfunction is an early manifestation of atherosclerosis. The cholesteryl ester transfer protein (CETP) has been considered proatherogenic by reducing plasma HDL levels. However, CETP may exhibit cell- or tissue-specific effects. We have previously reported that male mice expressing the human CETP gene show impaired endothelium-mediated vascular relaxation associated with oxidative stress. Although sexual dimorphisms on the metabolic role of CETP have been proposed, possible sex differences in the vascular effects of CETP were not previously studied. Thus, here we investigated the endothelial function of female CETP transgenic mice as compared with nontransgenic controls (NTg). Aortas from CETP females presented preserved endothelium-dependent relaxation to acetylcholine and an endothelium-dependent reduction of phenylephrine-induced contraction. eNOS phosphorylation (Ser1177) and calcium-induced NO levels were enhanced, whereas reactive oxygen species (ROS) production and NOX2 and SOD2 expression were reduced in the CETP female aortas. Furthermore, CETP females exhibited increased aortic relaxation to 17ß-estradiol (E2) and upregulation of heat shock protein 90 (HSP90) and caveolin-1, proteins that stabilize estrogen receptor (ER) in the caveolae. Indeed, CETP females showed an increased E2-induced relaxation in a manner sensitive to estrogen receptor-α (ERα) and HSP90 inhibitors methylpiperidinopyrazole (MPP) and geldanamycin, respectively. MPP also impaired the relaxation response to acetylcholine in CETP but not in NTg females. Altogether, the study indicates that CETP expression ameliorates the anticontractile endothelial effect and relaxation to E2 in females. This was associated with less ROS production, and increased eNOS-NO and E2-ERα pathways. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.NEW & NOTEWORTHY Here we demonstrated that CETP expression has a sex-specific impact on the endothelium function. Contrary to what was described for males, CETP-expressing females present preserved endothelium-dependent relaxation to acetylcholine and improved relaxation response to 17ß-estradiol. This was associated with less ROS production, increased eNOS-derived NO, and increased expression of proteins that stabilize estrogen receptor-α (ERα), thus increasing E2-ERα signaling sensitivity. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Receptor alfa de Estrogênio , Óxido Nítrico Sintase Tipo III , Animais , Feminino , Camundongos , Acetilcolina/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Endotélio/metabolismo , Endotélio Vascular/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação
2.
Life Sci ; 306: 120851, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926590

RESUMO

AIMS: The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS: Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS: II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1ß and IL-6 in lung explants following II/R. SIGNIFICANCE: The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.


Assuntos
Enteropatias , Isquemia Mesentérica , Traumatismo por Reperfusão , Animais , Enteropatias/tratamento farmacológico , Enteropatias/prevenção & controle , Isquemia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sinvastatina/farmacologia
3.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670953

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. Among the many mediators implicated in cystitis, the overproduction of reactive oxygen species (ROS) seems to play a key role, although the main source of ROS remains unclear. This study aimed to investigate the contribution of NADPH oxidase (NOX) isoforms in ROS generation and the voiding dysfunction of cyclophosphamide (CYP, 300 mg/Kg, ip, 24 h)-induced cystitis in adult female mice, a well-recognized animal model to study IC/BPS, by using GKT137831 (5 mg/Kg, ip, three times in a 24 h period) or GSK2795039 (5 mg/Kg, ip, three times in a 24 h period) to inhibit NOX1/4 or NOX2, respectively. Our results showed that treatment with GSK2795039 improved the dysfunctional voiding behavior induced by CYP, reduced bladder edema and inflammation, and preserved the urothelial barrier integrity and tight junction occludin expression, besides inhibiting the characteristic vesical pain and bladder superoxide anion generation. In contrast, the NOX1/4 inhibitor GKT137831 had no significant protective effects. Taken together, our in vivo and ex vivo data demonstrate that NOX2 is possibly the main source of ROS observed in cystitis-induced CYP in mice. Therefore, selective inhibition of NOX2 by GSK2795039 may be a promising target for future therapies for IC/BPS.

4.
Front Pharmacol ; 12: 720224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566644

RESUMO

Increased adiposity in perivascular adipose tissue (PVAT) has been related to vascular dysfunction. High-fat (HF) diet-induced obesity models are often used to analyze the translational impact of obesity, but differences in sex and Western diet type complicate comparisons between studies. The role of PVAT was investigated in small mesenteric arteries (SMAs) of male and female mice fed a HF or a HF plus high-sucrose (HF + HS) diet for 3 or 5 months and compared them to age/sex-matched mice fed a chow diet. Vascular responses of SMAs without (PVAT-) or with PVAT (PVAT+) were evaluated. HF and HF + HS diets increased body weight, adiposity, and fasting glucose and insulin levels without affecting blood pressure and circulating adiponectin levels in both sexes. HF or HF + HS diet impaired PVAT anticontractile effects in SMAs from females but not males. PVAT-mediated endothelial dysfunction in SMAs from female mice after 3 months of a HF + HS diet, whereas in males, this effect was observed only after 5 months of HF + HS diet. However, PVAT did not impact acetylcholine-induced relaxation in SMAs from both sexes fed HF diet. The findings suggest that the addition of sucrose to a HF diet accelerates PVAT dysfunction in both sexes. PVAT dysfunction in response to both diets was observed early in females compared to age-matched males suggesting a susceptibility of the female sex to PVAT-mediated vascular complications in the setting of obesity. The data illustrate the importance of the duration and composition of obesogenic diets for investigating sex-specific treatments and pharmacological targets for obesity-induced vascular complications.

5.
Metabolism ; 116: 154701, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417894

RESUMO

BACKGROUND: Protein malnutrition in childhood predisposes individuals to vascular and pancreatic endocrine dysfunction, thus increasing the risk of diabetes and hypertension. Because taurine may reduce cardiometabolic risk, we hypothesized that taurine treatment has a beneficial effect on the pancreatic vasculature during protein restriction. METHODS AND RESULTS: Weaned mice were fed a normal or a low-protein diet and were treated with or without taurine for 3 months. The lieno-pancreatic artery (LPA) from low-protein diet-treated mice exhibited impaired endothelium-dependent relaxation to acetylcholine that was associated with decreased endothelium-derived hyperpolarization (EDH), hydrogen sulfide (H2S) production, and H2S-synthesizing CBS expression and impaired vasorelaxation to an H2S-donor, NaHS. These changes were prevented by taurine treatment. We compared the effects of taurine with the effects of the direct vasodilator hydralazine and found that both normalized blood pressure and the endothelial vasodilator function of the LPA in the mice fed a protein-restricted diet. However, only taurine restored the CBS expression in the LPA and insulin secretion in response to high glucose. The LPA supplies the pancreas and shares morphometry with the mesenteric resistance artery (MRA). However, in the MRA, low-protein diet-induced endothelial dysfunction is driven by impaired NOS-derived NO with no changes in H2S signaling. CONCLUSIONS: The results suggest that taurine protects against protein malnutrition-induced endothelial dysfunction in the LPA by upregulating the CBS-H2S pathway. Considering the importance of the pancreatic vasculature for endocrine islet activity, taurine may be a potential therapy for the vascular and metabolic dysfunction associated with malnutrition and comorbidities.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Desnutrição/complicações , Pâncreas/efeitos dos fármacos , Deficiência de Proteína/complicações , Taurina/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Proteínas Alimentares/administração & dosagem , Endotélio Vascular/fisiopatologia , Desnutrição/tratamento farmacológico , Desnutrição/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/irrigação sanguínea , Pâncreas/fisiopatologia , Deficiência de Proteína/tratamento farmacológico , Deficiência de Proteína/fisiopatologia , Vasodilatação/efeitos dos fármacos
6.
Curr Pharm Des ; 26(30): 3768-3777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32611295

RESUMO

In addition to the endothelium, the perivascular adipose tissue (PVAT) has been described to be involved in the local modulation of vascular function by synthetizing and releasing vasoactive factors. Under physiological conditions, PVAT has anticontractile and anti-inflammatory effects. However, in the context of hypertension, obesity and type 2 diabetes, the PVAT pattern of anticontractile adipokines is altered, favoring oxidative stress, inflammation and, consequently, vascular dysfunction. Therefore, dysfunctional PVAT has become a target for therapeutic intervention in cardiometabolic diseases. An increasing number of studies have revealed sex differences in PVAT morphology and in the modulatory effects of PVAT on endothelial function and vascular tone. Moreover, distinct mechanisms underlying PVAT dysfunction may account for vascular abnormalities in males and females. Therefore, targeting sex-specific mechanisms of PVAT dysfunction in cardiovascular diseases is an evolving strategy for cardiovascular protection.


Assuntos
Diabetes Mellitus Tipo 2 , Adipocinas , Tecido Adiposo , Feminino , Humanos , Masculino , Obesidade , Caracteres Sexuais
7.
Curr Hypertens Rev ; 16(3): 192-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30968777

RESUMO

Most of the systemic blood vessels are surrounded by the perivascular adipose tissue (PVAT). Healthy PVAT is anticontractile and anti-inflammatory, but a dysfunctional PVAT has been suggested to link cardiometabolic risk factors to vascular dysfunction. Vascular oxidative stress is an important pathophysiological event in cardiometabolic complications of obesity, type 2 diabetes, and hypertension. PVAT-derived adipocytes generate reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide that might signal to the vascular wall. Therefore, an abnormal generation of ROS by PVAT emerges as a potential pathophysiological mechanism underlying vascular injury. This review summarizes new findings describing ROS production in the PVAT of several vascular beds, major sources of ROS in this tissue including mitochondria, NADPH oxidase and eNOS uncoupled, and finally, changes in ROS production affecting vascular function in the presence of cardiometabolic risk factors and diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Obesidade/diagnóstico , Estresse Oxidativo
8.
Front Physiol ; 9: 229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615924

RESUMO

Background: Endothelial dysfunction plays a pivotal role in the initiation of atherosclerosis. Vascular insulin resistance might contribute to a reduction in endothelial nitric oxide (NO) production, leading to impaired endothelium-dependent relaxation in cardiometabolic diseases. Because perivascular adipose tissue (PVAT) controls endothelial function and NO bioavailability, we hypothesized a role for this fat deposit in the vascular complications associated with the initial stages of atherosclerosis. Therefore, we investigated the potential involvement of PVAT in the early endothelial dysfunction in hypercholesterolemic LDL receptor knockout mice (LDLr-KO). Methods: Thoracic aortas with and without PVAT were isolated from 4-month-old C57BL/6J (WT) and LDLr-KO mice. The contribution of PVAT to relaxation responses to acetylcholine, insulin, and sodium nitroprusside was investigated. Western blotting was used to examine endothelial NO synthase (eNOS) and adiponectin expression, as well the insulin signaling pathway in aortic PVAT. Results: PVAT-free aortas of LDLr-KO mice exhibited impaired acetylcholine- and insulin-induced relaxation compared with those of WT mice. Both vasodilatory responses were restored by the presence of PVAT in LDLr-KO mice, associated with enhanced acetylcholine-induced NO levels. PVAT did not change vasodilatory responses to acetylcholine and insulin in WT mice, while vascular relaxation evoked by the NO donor sodium nitroprusside was not modified by either genotype or PVAT. The expression of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), AKT, ERK1/2, phosphorylation of AKT (Ser473) and ERK1/2 (Thr202/Tyr204), and adiponectin was similar in the PVAT of WT and LDLr-KO mice, suggesting no changes in PVAT insulin signaling. However, eNOS expression was enhanced in the PVAT of LDLr-KO mice, while eNOS expression was less abundant in PVAT-free aortas. Conclusion: These results suggest that elevated eNOS-derived NO production in aortic PVAT might be a compensatory mechanism for the endothelial dysfunction and impaired vasodilator action of insulin in hypercholesterolemic LDLr-deficient mice. This protective effect may limit the progression of atherosclerosis in genetic hypercholesterolemia in the absence of an atherogenic diet.

9.
Clin Exp Pharmacol Physiol ; 45(3): 293-302, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29265399

RESUMO

The aim of the present study was to evaluate the effects of aerobic exercise training on perivascular adipose tissue (PVAT) function in thoracic aorta from rats fed a high-fat diet. Aortic vascular reactivity was performed in sedentary (SD), trained (TR), sedentary high-fat diet (SD-HF), and trained high-fat diet (TR-HF) male Wistar rats in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also measured circulatory concentrations of leptin and tumour necrosis factor alpha (TNF-α), as well as the protein expressions of TNF-α receptor 1 (TNFR1) and inducible nitric oxide synthase (iNOS) on PVAT. In the SD-HF group, the body weight, epididymal fat pad, thoracic PVAT, circulatory triglycerides, insulin, leptin and TNF-α were increased when compared with the SD group, whereas exercise training reduced these values in TR-HF group. The relaxing response curves to acetylcholine and sodium nitroprusside were not modified by either intervention (high-fat diet or exercise training) or the presence of PVAT. The presence of PVAT had an anti-contractile effect in response to serotonin in all groups. In SD-HF group, the increased magnitude of anti-contractile effects was in parallel with an up-regulation of iNOS protein expression in PVAT without alteration in TNFR1. Exercise training was effective in normalizing the vascular reactivity in rings PVAT+ and in reducing the iNOS protein expression. Exercise training prevented the PVAT-induced alteration in thoracic aorta from rats fed a high-fat diet.


Assuntos
Tecido Adiposo/fisiologia , Aorta/fisiologia , Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Animal , Animais , Aorta/efeitos dos fármacos , Biomarcadores , Peso Corporal , Gorduras na Dieta , Epididimo/anatomia & histologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/sangue
10.
Pharmacol Res ; 122: 35-45, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28539257

RESUMO

Obesity-associated hypertension is accompanied by a number of cardiovascular risk factors including vascular insulin resistance (IR) and higher sympathetic nervous activity. Therefore, autonomic blockade was demonstrated to reverse hypertension, endothelial dysfunction and IR in obese individuals. We hypothesized that ß-AR blockade with propranolol would restore endothelial function and vascular insulin signaling in obesity, associated with an anti-inflammatory effect. Body weight, systolic blood pressure (SBP), plasma biochemical parameters and aortic endothelial function were analyzed in mice fed standard diet (control group) or a high fat diet (HFD) that were treated with vehicle (water) or propranolol (10mg/kg/day) for 8weeks. Propranolol treatment did not modify obesogenic effect of HFD feeding. However, propranolol was effective in preventing the rise in SBP, the hyperinsulinemia and the impaired endothelium-dependent relaxation to acetylcholine and to insulin in obese mice. Protective effect of propranolol administration in endothelial function was associated with increased nitric oxide (NO) production and phosphorylation of Akt (Ser473) and eNOS (Ser1177), but with reduced phospho-IRS-1(Ser307) and phospho-ERK1/2 (Thr202/Tyr204). In addition, ß-blocker propranolol prevented the NF-kB nuclear translocation and the increase in phospho-IκB-α (Ser32) and in interleukin(IL)-6 expression in aorta of obese mice, without significant changes in either aortic reactive oxygen species production or in circulating IL-6 and TNF-α levels. In ß2-AR knockout mice, despite increasing body weight and visceral fat, HFD did not increase SBP and showed a partial improvement of endothelial function, revealing a role of ß2-AR in cardiovascular effects of obesity. In conclusion, our results suggest that ß-AR blockade with propranolol is effective to prevent the endothelial dysfunction, vascular IR and pro-inflammatory state displayed in HFD-induced obesity, independent of changes in body weight.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Obesidade/complicações , Propranolol/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/fisiopatologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Propranolol/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Front Physiol ; 7: 295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462277

RESUMO

Divergent phenotypes between the perivascular adipose tissue (PVAT) surrounding the abdominal and the thoracic aorta might be implicated in regional aortic differences, such as susceptibility to atherosclerosis. Although PVAT of the thoracic aorta exhibits anti-contractile function, the role of PVAT in the regulation of the vascular tone of the abdominal aorta is not well defined. In the present study, we compared the anti-contractile function, nitric oxide (NO) availability, and reactive oxygen species (ROS) formation in PVAT and vessel walls of abdominal and thoracic aorta. Abdominal and thoracic aortic tissue from male Wistar rats were used to perform functional and molecular experiments. PVAT reduced the contraction evoked by phenylephrine in the absence and presence of endothelium in the thoracic aorta, whereas this anti-contractile effect was not observed in the abdominal aorta. Abdominal PVAT exhibited a reduction in endothelial NO synthase (eNOS) expression compared with thoracic PVAT, without differences in eNOS expression in the vessel walls. In agreement with this result, NO production evaluated in situ using 4,5-diaminofluorescein was less pronounced in abdominal compared with thoracic aortic PVAT, whereas no significant difference was observed for endothelial NO production. Moreover, NOS inhibition with L-NAME enhanced the phenylephrine-induced contraction in endothelial-denuded rings with PVAT from thoracic but not abdominal aorta. ROS formation and lipid peroxidation products evaluated through the quantification of hydroethidine fluorescence and 4-hydroxynonenal adducts, respectively, were similar between PVAT and vessel walls from the abdominal and thoracic aorta. Extracellular superoxide dismutase (SOD) expression was similar between the vessel walls and PVAT of the abdominal and thoracic aorta. However, Mn-SOD levels were reduced, while CuZn-SOD levels were increased in abdominal PVAT compared with thoracic aortic PVAT. In conclusion, our results demonstrate that the anti-contractile function of PVAT is lost in the abdominal portion of the aorta through a reduction in eNOS-derived NO production compared with the thoracic aorta. Although relative SOD isoforms are different along the aorta, ROS formation, and lipid peroxidation seem to be similar. These findings highlight the specific regional roles of PVAT depots in the control of vascular function that can drive differences in susceptibility to vascular injury.

12.
Hypertension ; 68(3): 726-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432866

RESUMO

Sustained stimulation of ß-adrenoceptors (ß-ARs) and activation of renin-angiotensin-aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by ß-AR overstimulation. ß-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase-derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue-derived corticosterone in association with increased expression of 11ß-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by ß-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by ß-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation.


Assuntos
Cardiomegalia/tratamento farmacológico , Losartan/administração & dosagem , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de Mineralocorticoides/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Espironolactona/administração & dosagem , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Cardiomegalia/induzido quimicamente , Modelos Animais de Doenças , Isoproterenol/farmacologia , Masculino , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/efeitos dos fármacos , Papel (figurativo) , Vasoconstrição/efeitos dos fármacos
13.
Life Sci ; 125: 49-56, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25640757

RESUMO

AIMS: The aim of this study was to investigate whether ß-adrenoceptor (ß-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. MAIN METHODS: Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). KEY FINDINGS: ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. SIGNIFICANCE: The present data indicate that ß-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of ß-AR overactivation on pulmonary circulation.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , GMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Isoproterenol/farmacologia , Óxido Nítrico/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/fisiologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfoproteínas/metabolismo , Artéria Pulmonar/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
14.
PLoS One ; 9(8): e105851, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170895

RESUMO

INTRODUCTION: Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. METHODS AND RESULTS: Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. CONCLUSION: Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dieta com Restrição de Proteínas , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia , Acetofenonas/farmacologia , Acetilcolina/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Western Blotting , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Masculino , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Taurina/administração & dosagem , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...