Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Soins ; 69(884): 56-57, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38614523

RESUMO

Aged 45, married with two children, Marc has always lived a "healthy" lifestyle: no cigarettes, a balanced organic diet and regular exercise. He had never experienced any serious health problems until January 2023, when symptoms led him to seek medical advice. He was diagnosed with pancreatic cancer. He tells us about his journey since then.


Assuntos
Exercício Físico , Humanos , Criança , Masculino
2.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617209

RESUMO

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

3.
Mol Syst Biol ; 20(4): 428-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467836

RESUMO

Protein-protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferases/metabolismo , Inteligência Artificial , Descoberta de Drogas
4.
Nat Commun ; 14(1): 6570, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853017

RESUMO

Cooperativity and antagonism between transcription factors (TFs) can drastically modify their binding to regulatory DNA elements. While mapping these relationships between TFs is important for understanding their context-specific functions, existing approaches either rely on DNA binding motif predictions, interrogate one TF at a time, or study individual TFs in parallel. Here, we introduce paired yeast one-hybrid (pY1H) assays to detect cooperativity and antagonism across hundreds of TF-pairs at DNA regions of interest. We provide evidence that a wide variety of TFs are subject to modulation by other TFs in a DNA region-specific manner. We also demonstrate that TF-TF relationships are often affected by alternative isoform usage and identify cooperativity and antagonism between human TFs and viral proteins from human papillomaviruses, Epstein-Barr virus, and other viruses. Altogether, pY1H assays provide a broadly applicable framework to study how different functional relationships affect protein occupancy at regulatory DNA regions.


Assuntos
Infecções por Vírus Epstein-Barr , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , DNA/metabolismo , Sítios de Ligação
5.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732209

RESUMO

Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease-causing. This creates a new bottleneck: determining the functional impact of each variant - largely a painstaking, customized process undertaken one or a few genes or variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,547 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of unknown significance. Our publicly available resource will likely accelerate the understanding of coding variation in human diseases.

6.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398436

RESUMO

Protein-protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays and AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.

7.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298131

RESUMO

Understanding how genetic variation affects phenotypes represents a major challenge, particularly in the context of human disease. Although numerous disease-associated genes have been identified, the clinical significance of most human variants remains unknown. Despite unparalleled advances in genomics, functional assays often lack sufficient throughput, hindering efficient variant functionalization. There is a critical need for the development of more potent, high-throughput methods for characterizing human genetic variants. Here, we review how yeast helps tackle this challenge, both as a valuable model organism and as an experimental tool for investigating the molecular basis of phenotypic perturbation upon genetic variation. In systems biology, yeast has played a pivotal role as a highly scalable platform which has allowed us to gain extensive genetic and molecular knowledge, including the construction of comprehensive interactome maps at the proteome scale for various organisms. By leveraging interactome networks, one can view biology from a systems perspective, unravel the molecular mechanisms underlying genetic diseases, and identify therapeutic targets. The use of yeast to assess the molecular impacts of genetic variants, including those associated with viral interactions, cancer, and rare and complex diseases, has the potential to bridge the gap between genotype and phenotype, opening the door for precision medicine approaches and therapeutic development.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Genômica , Proteoma/genética , Fenótipo
8.
NPJ Sci Learn ; 8(1): 22, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369691

RESUMO

Music performance requires high levels of motor control. Professional musicians use body movements not only to accomplish and help technical efficiency, but to shape expressive interpretation. Here, we recorded motion and audio data of twenty participants performing four musical fragments varying in the degree of technical difficulty to analyze how knee flexion is employed by expert saxophone players. Using a computational model of the auditory periphery, we extracted emergent acoustical properties of sound to inference critical cognitive patterns of music processing and relate them to motion data. Results showed that knee flexion is causally linked to tone expectations and correlated to rhythmical density, suggesting that this gesture is associated with expressive and facilitative purposes. Furthermore, when instructed to play immobile, participants tended to microflex (>1 Hz) more frequently compared to when playing expressively, possibly indicating a natural urge to move to the music. These results underline the robustness of body movement in musical performance, providing valuable insights for the understanding of communicative processes, and development of motor learning cues.

9.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061542

RESUMO

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Assuntos
Proteínas de Drosophila , Mapas de Interação de Proteínas , Animais , Mapas de Interação de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido
10.
Eur J Neurosci ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118877

RESUMO

Pupil size covaries with the diffusion rate of the cholinergic and noradrenergic neurons throughout the brain, which are essential to arousal. Recent findings suggest that slow pupil fluctuations during locomotion are an index of sustained activity in cholinergic axons, whereas phasic dilations are related to the activity of noradrenergic axons. Here, we investigated movement induced arousal (i.e., by singing and swaying to music), hypothesising that actively engaging in musical behaviour will provoke stronger emotional engagement in participants and lead to different qualitative patterns of tonic and phasic pupil activity. A challenge in the analysis of pupil data is the turbulent behaviour of pupil diameter due to exogenous ocular activity commonly encountered during motor tasks and the high variability typically found between individuals. To address this, we developed an algorithm that adaptively estimates and removes pupil responses to ocular events, as well as a functional data methodology, derived from Pfaffs' generalised arousal, that provides a new statistical dimension on how pupil data can be interpreted according to putative neuromodulatory signalling. We found that actively engaging in singing enhanced slow cholinergic-related pupil dilations and having the opportunity to move your body while performing amplified the effect of singing on pupil activity. Phasic pupil oscillations during motor execution attenuated in time, which is often interpreted as a measure of sense of agency over movement.

11.
Nat Commun ; 14(1): 1582, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949045

RESUMO

Comprehensive understanding of the human protein-protein interaction (PPI) network, aka the human interactome, can provide important insights into the molecular mechanisms of complex biological processes and diseases. Despite the remarkable experimental efforts undertaken to date to determine the structure of the human interactome, many PPIs remain unmapped. Computational approaches, especially network-based methods, can facilitate the identification of previously uncharacterized PPIs. Many such methods have been proposed. Yet, a systematic evaluation of existing network-based methods in predicting PPIs is still lacking. Here, we report community efforts initiated by the International Network Medicine Consortium to benchmark the ability of 26 representative network-based methods to predict PPIs across six different interactomes of four different organisms: A. thaliana, C. elegans, S. cerevisiae, and H. sapiens. Through extensive computational and experimental validations, we found that advanced similarity-based methods, which leverage the underlying network characteristics of PPIs, show superior performance over other general link prediction methods in the interactomes we considered.


Assuntos
Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Animais , Humanos , Mapeamento de Interação de Proteínas/métodos , Caenorhabditis elegans , Mapas de Interação de Proteínas , Biologia Computacional/métodos
13.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217029

RESUMO

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome de COVID-19 Pós-Aguda , Replicação Viral/genética , Ubiquitina Tiolesterase/farmacologia
14.
J Mol Biol ; 434(11): 167603, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662469

RESUMO

Knowing which proteins interact with each other is essential information for understanding how most biological processes at the cellular and organismal level operate and how their perturbation can cause disease. Continuous technical and methodological advances over the last two decades have led to many genome-wide systematically-generated protein-protein interaction (PPI) maps. To help store, visualize, analyze and disseminate these specialized experimental datasets via the web, we developed the freely-available Open-source Protein Interaction Platform (openPIP) as a customizable web portal designed to host experimental PPI maps. Such a portal is often required to accompany a paper describing the experimental data set, in addition to depositing the data in a standard repository. No coding skills are required to set up and customize the database and web portal. OpenPIP has been used to build the databases and web portals of two major protein interactome maps, the Human and Yeast Reference Protein Interactome maps (HuRI and YeRI, respectively). OpenPIP is freely available as a ready-to-use Docker container for hosting and sharing PPI data with the scientific community at http://openpip.baderlab.org/ and the source code can be downloaded from https://github.com/BaderLab/openPIP/.


Assuntos
Uso da Internet , Mapas de Interação de Proteínas , Software , Bases de Dados Factuais , Genoma Humano , Humanos
15.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
16.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
17.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962942

RESUMO

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Animais , Retículo Endoplasmático/metabolismo , Glicosilação , Mamíferos , Camundongos , Processamento de Proteína Pós-Traducional , Transporte Proteico
18.
Nat Genet ; 53(3): 342-353, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33558758

RESUMO

Technological and computational advances in genomics and interactomics have made it possible to identify how disease mutations perturb protein-protein interaction (PPI) networks within human cells. Here, we show that disease-associated germline variants are significantly enriched in sequences encoding PPI interfaces compared to variants identified in healthy participants from the projects 1000 Genomes and ExAC. Somatic missense mutations are also significantly enriched in PPI interfaces compared to noninterfaces in 10,861 tumor exomes. We computationally identified 470 putative oncoPPIs in a pan-cancer analysis and demonstrate that oncoPPIs are highly correlated with patient survival and drug resistance/sensitivity. We experimentally validate the network effects of 13 oncoPPIs using a systematic binary interaction assay, and also demonstrate the functional consequences of two of these on tumor cell growth. In summary, this human interactome network framework provides a powerful tool for prioritization of alleles with PPI-perturbing mutations to inform pathobiological mechanism- and genotype-based therapeutic discovery.


Assuntos
Biologia Computacional/métodos , Mutação , Neoplasias/genética , Mapas de Interação de Proteínas/genética , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Arginina/genética , Arginina/metabolismo , Doença/genética , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Testes Farmacogenômicos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Reprodutibilidade dos Testes , Serina/genética , Serina/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/genética , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Nat Biotechnol ; 39(4): 510-519, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257861

RESUMO

Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.


Assuntos
Técnicas de Reprogramação Celular/métodos , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Processamento Alternativo , Diferenciação Celular , Engenharia Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Biologia de Sistemas
20.
J Biol Chem ; 295(50): 16906-16919, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33060198

RESUMO

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


Assuntos
Movimento Celular , Glioma/patologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais , Fuso Acromático/genética , Quinases Ativadas por p21/genética , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Epistasia Genética , Feminino , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Inibidores de Proteínas Quinases/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...