Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 112: 105439, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105345

RESUMO

Polyomaviruses (PyVs) are known to infect a diverse range of vertebrate host species. We report the discovery of PyVs in vesper bats (family Vespertilionidae) from sampling in Central Europe. Seven partial VP1 sequences from different PyVs were detected in samples originating from six distinct vesper bat species. Using a methodology based on conserved segments within the major capsid virus protein 1 (VP1) among known PyVs, the complete genomes of two different novel bat PyVs were determined. The genetic distances of the large T antigen coding sequences from these PyVs compared to previously-described bat PyVs exceeded 15% meriting classification as representatives of two novel PyV species: Alphapolyomavirus epserotinus and Alphapolyomavirus myodaubentonii. Phylogenetic analysis revealed that both belong to the genus Alphapolyomavirus and clustered together with high confidence in clades including other bat alphapolyomaviruses reported from China, South America and Africa. In silico protein modeling of the VP1 subunits and capsid pentamers, and electrostatic surface potential comparison of the pentamers showed significant differences between the reference template (murine polyomavirus) and the novel bat PyVs. An electrostatic potential difference pattern between the two bat VP1 pentamers was also revealed. Disaccharide molecular docking studies showed that the reference template and both bat PyVs possess the typical shallow sialic acid-binding site located between two VP1 subunits, with relevant oligosaccharide-binding affinities. The characterisation of these novel bat PyVs and the reported properties of their capsid proteins will potentially contribute in the elucidation of the conditions creating the host-pathogen restrictions associated with these viruses.


Assuntos
Quirópteros , Polyomavirus , Animais , Camundongos , Filogenia , Simulação de Acoplamento Molecular , Genoma Viral , Polyomavirus/genética , Polyomaviridae/genética
2.
Vet Res Commun ; 47(3): 1561-1573, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37002455

RESUMO

Several bat-associated circoviruses and circular rep-encoding single-stranded DNA (CRESS DNA) viruses have been described, but the exact diversity and host species of these viruses are often unknown. Our goal was to describe the diversity of bat-associated circoviruses and cirliviruses, thus, 424 bat samples from more than 80 species were collected on four continents. The samples were screened for circoviruses using PCR and the resulting amino acid sequences were subjected to phylogenetic analysis. The majority of bat strains were classified in the genus Circovirus and some strains in the genus Cyclovirus and the clades CRESS1 and CRESS3. Some strains, however, could only be classified at the taxonomic level of the order and were not classified in any of the accepted or proposed clades. In the family Circoviridae, 71 new species have been predicted. This screening of bat samples revealed a great diversity of circoviruses and cirliviruses. These studies underline the importance of the discovery and description of new cirliviruses and the need to establish new species and families in the order Cirlivirales.


Assuntos
Quirópteros , Infecções por Circoviridae , Circoviridae , Circovirus , Animais , Circovirus/genética , Filogenia , Circoviridae/genética , Sequência de Aminoácidos , Genoma Viral , Infecções por Circoviridae/genética , Infecções por Circoviridae/veterinária
3.
Transbound Emerg Dis ; 69(6): e3479-e3486, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36315348

RESUMO

Bovine adenoviruses (BAdV) are known to cause respiratory and/or intestinal disease in calves. Infection can manifest as acute outbreaks, but more often only sporadic cases occur. Here we describe the PCR detection and partial sequence characterization of several BAdVs found in sick or dead calves on different farms in Western Hungary. Intermittent diarrhoeal illnesses occurred after weaning among calves on several farms located up to 40 km apart. A high-sensitivity, broad-spectrum nested PCR, developed for the general detection of adenoviruses, gave positive results in four independent cases. Direct sequencing of PCR products showed clear results from only two samples, whereas sequences from the other two amplicons were mixed. Molecular cloning of these heterogeneous PCR products was performed to separate each DNA fragment therein. By sequencing several plasmid clones from both mixed samples, we were able to detect the simultaneous presence of two different BAdV types, namely types 6 and 10 classified into two separate (Atadenovirus and Mastadenovirus) genera. The sequence of one homogenous sample was identified as being derived also from BAdV-10, whereas the other sample contained a novel type, proposed to be BAdV-11. We demonstrated, for the very first time, the occurrence of the two latter virus types in continental Europe. Their appearance in Hungary marks a significant shift in the types of BAdVs actually circulating in the country. Considering the similarity of the pathological findings to those, attributed to BAdV-10 infections reported to date, the causative role of the viruses in these cases seems to be plausible. Phylogeny reconstruction further confirmed that BAdVs represent multiple genetic lineages.


Assuntos
Adenoviridae , Mastadenovirus , Bovinos , Animais , Sequência de Bases , Adenoviridae/genética , Mastadenovirus/genética , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Europa (Continente)/epidemiologia
4.
Transbound Emerg Dis ; 69(5): 3097-3102, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34724349

RESUMO

Adenoviruses cause a range of major diseases across many diverse animal species including ruminants. They are classified into six genera in the family Adenoviridae. In deer species, two adenoviruses are currently recognized: deer adenovirus 1 in the Atadenovirus genus, and deer adenovirus 2 in the Mastadenovirus genus. Deer adenovirus 1 causes adenovirus haemorrhagic disease with high fatality in black-tailed and mule deer in North America. Conversely, deer adenovirus 2 was incidentally detected from a healthy white-tailed deer fawn, but experimentally it has been shown to cause pyrexia, cough and moderate to severe haemorrhage. Here, we detected a novel adenovirus, reindeer adenovirus 1, from lung lesions of a 5-year-old male reindeer (Rangifer tarandus). This animal presented with aspiration pneumonia and necrotizing bronchiolitis following a period of clinical weakness, nasal discharge and wasting. Histopathological examination of the lung revealed large intranuclear basophilic inclusions associated with the areas of necrotizing bronchiolitis. Next generation sequencing of the lung tissue identified a novel mastadenovirus with close similarity to deer adenovirus 2 and bovine adenovirus 3. To our knowledge, this is the first report of a deer mastadenovirus associated with necrotizing bronchiolitis in captive reindeer.


Assuntos
Infecções por Adenoviridae , Bronquiolite , Doenças dos Bovinos , Cervos , Rena , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Animais , Bronquiolite/veterinária , Bovinos , Masculino , Ruminantes
5.
J Gen Virol ; 101(10): 1119-1130, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32644038

RESUMO

Polyomaviruses (PyVs) are small, circular dsDNA viruses carried by diverse vertebrates, including bats. Although previous studies have reported several horseshoe bat PyVs collected in Zambia and China, it is still unclear how PyVs evolved in this group of widely dispersed mammals. Horseshoe bats (genus Rhinolophus) are distributed across the Old World and are natural reservoirs of numerous pathogenic viruses. Herein, non-invasive bat samples from European horseshoe bat species were collected in Hungary for PyV identification and novel PyVs with complete genomes were successfully recovered from two different European horseshoe bat species. Genomic and phylogenetic analysis of the Hungarian horseshoe bat PyVs supported their classification into the genera Alphapolyomavirus and Betapolyomavirus. Notably, despite the significant geographical distances between the corresponding sampling locations, Hungarian PyVs exhibited high genetic relatedness with previously described Zambian and Chinese horseshoe bat PyVs, and phylogenetically clustered with these viruses in each PyV genus. Correlation and virus-host relationship analysis suggested that these PyVs co-diverged with their European, African and Asian horseshoe bat hosts distributed on different continents during their evolutionary history. Additionally, assessment of selective pressures over the major capsid protein (VP1) of horseshoe bat PyVs showed sites under positive selection located in motifs exposed to the exterior of the capsid. In summary, our findings revealed a pattern of stable intrahost divergence of horseshoe bat PyVs with their mammalian hosts on the African and Eurasian continents over evolutionary time.


Assuntos
Evolução Biológica , Quirópteros/virologia , Evolução Molecular , Polyomaviridae/genética , Polyomavirus/genética , Polyomavirus/isolamento & purificação , África , Animais , Ásia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , China , Quirópteros/classificação , Europa (Continente) , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Hungria , Filogenia , Polyomaviridae/classificação , Polyomaviridae/isolamento & purificação , Seleção Genética
6.
J Mol Evol ; 88(1): 41-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599342

RESUMO

Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus-host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Evolução Molecular , Humanos , Vírus/patogenicidade
7.
Virus Res ; 277: 197846, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870796

RESUMO

The presence of a novel adenovirus (AdV) was detected by PCR and sequencing, in the internal organs of a captive polar bear that had died in the Budapest zoo. The virus content of the samples proved to be high enough to allow for conventional Sanger sequencing on PCR-amplified genomic fragments. With this approach, the sequence of the entire genome of the putative polar bear adenovirus 1 (PBAdV-1) was obtained. Although the genome was found to be short, consisting of 27,952 base pairs merely, with a relatively balanced G + C content of 46.3 %, its organisation corresponded largely to that of a typical mastadenovirus. Every genus-common gene could be identified except that of protein IX. The short E3 region of the PBAdV-1 consisted of two novel, supposedly type-specific ORFs only, whereas no homologue of any of the E3 genes, usually conserved in mastadenoviruses, such as for example that of the 12.5 K protein, were present. In the E4 region, only the highly conserved gene of the 34 K protein was found besides two novel ORFs showing no homology to any known E4 ORFs. In silico sequence analysis revealed putative splicing donor and acceptor sites in the genes of the E1A, IVa2, DNA-dependent DNA polymerase, pTP, 33 K proteins, and also of U exon protein, all being characteristic for mastadenoviruses. Phylogenetic calculations, based on various proteins, further supported that the newly-detected PBAdV is the representative of a new species within the genus Mastadenovirus, and may represent the evolutionary lineage of adenoviruses that coevolved with carnivorans.


Assuntos
Infecções por Adenoviridae/veterinária , Genoma Viral , Mastadenovirus/classificação , Filogenia , Ursidae/virologia , Infecções por Adenoviridae/virologia , Animais , Animais de Zoológico/virologia , DNA Viral/genética , Feminino , Mastadenovirus/isolamento & purificação , Análise de Sequência de DNA , Proteínas Virais/genética , Sequenciamento Completo do Genoma
8.
Arch Virol ; 164(8): 2205-2207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152248

RESUMO

Pathological examination of a suckling male lamb showed severe viral pneumonia with suspected bacterial superinfection. Adenovirus was detected by immunohistochemical examination of the affected lung samples. Detection of the suspected adenovirus by PCR and subsequent isolation of the virus were successful. Using next-generation sequencing, the full genome of this ovine adenovirus was sequenced and analysed. A genome sequence comparison showed that it was a novel mastadenovirus type (named "ovine adenovirus 8") that did not belong to any of the established adenovirus species. The genome is 36,206 bp long, containing 93-bp inverted terminal repeats and 29 predicted genes, including the two genus-specific genes (encoding proteins V and IX). Ovine adenovirus 8 shows the closest relationship to ovine adenovirus 6. These two viruses seem to merit the establishment of a novel ovine mastadenovirus species for them, for which we proposed the name "Ovine mastadenovirus C".


Assuntos
Adenoviridae/genética , Genoma Viral/genética , Mastadenovirus/genética , Infecções por Adenoviridae/virologia , Animais , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Ovinos
9.
J Gen Virol ; 99(11): 1494-1508, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30277856

RESUMO

Murine adenovirus 2 (MAdV-2) infects cells of the mouse gastrointestinal tract. Like human adenoviruses, it is a member of the genus Mastadenovirus, family Adenoviridae. The MAdV-2 genome has a single fibre gene that expresses a 787 residue-long protein. Through analogy to other adenovirus fibre proteins, it is expected that the carboxy-terminal virus-distal head domain of the fibre is responsible for binding to the host cell, although the natural receptor is unknown. The putative head domain has little sequence identity to adenovirus fibres of known structure. In this report, we present high-resolution crystal structures of the carboxy-terminal part of the MAdV-2 fibre. The structures reveal a domain with the typical adenovirus fibre head topology and a domain containing two triple ß-spiral repeats of the shaft domain. Through glycan microarray profiling, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and site-directed mutagenesis, we show that the fibre specifically binds to the monosaccharide N-acetylglucosamine (GlcNAc). The crystal structure of the complex reveals that GlcNAc binds between the AB and CD loops at the top of each of the three monomers of the MAdV-2 fibre head. However, infection competition assays show that soluble GlcNAc monosaccharide and natural GlcNAc-containing polymers do not inhibit infection by MAdV-2. Furthermore, site-directed mutation of the GlcNAc-binding residues does not prevent the inhibition of infection by soluble fibre protein. On the other hand, we show that the MAdV-2 fibre protein binds GlcNAc-containing mucin glycans, which suggests that the MAdV-2 fibre protein may play a role in viral mucin penetration in the mouse gut.


Assuntos
Acetilglucosamina/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Domínios Proteicos , Receptores Virais/metabolismo , Animais , Cristalografia por Raios X , Camundongos , Ligação Proteica , Conformação Proteica
10.
Virol J ; 12: 81, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994880

RESUMO

BACKGROUND: In adenoviruses, primary host cell recognition is generally performed by the head domains of their homo-trimeric fibre proteins. This first interaction is reversible. A secondary, irreversible interaction subsequently takes place via other adenovirus capsid proteins and leads to a productive infection. Although many fibre head structures are known for human mastadenoviruses, not many animal adenovirus fibre head structures have been determined, especially not from those belonging to adenovirus genera other than Mastadenovirus. METHODS: We constructed an expression vector for the fibre head domain from a ruminant atadenovirus, bovine adenovirus 4 (BAdV-4), consisting of amino acids 414-535, expressed the protein in Escherichia coli, purified it by metal affinity and cation exchange chromatography and crystallized it. The structure was solved using single isomorphous replacement plus anomalous dispersion of a mercury derivative and refined against native data that extended to 1.2 Å resolution. RESULTS: Like in other adenoviruses, the BAdV-4 fibre head monomer contains a beta-sandwich consisting of ABCJ and GHID sheets. The topology is identical to the fibre head of the other studied atadenovirus, snake adenovirus 1 (SnAdV-1), including the alpha-helix in the DG-loop, despite of them having a sequence identity of only 15 %. There are also differences which may have implications for ligand binding. Beta-strands G and H are longer and differences in several surface-loops and surface charge are observed. CONCLUSIONS: Chimeric adenovirus fibres have been used to retarget adenovirus-based anti-cancer and gene therapy vectors. Ovine adenovirus 7 (OAdV-7), another ruminant atadenovirus, is intensively tested as a basis for such a vector. Here, we present the high-resolution atomic structure of the BAdV-4 fibre head domain, the second atadenovirus fibre head structure known and the first of an atadenovirus that infects a mammalian host. Future research should focus on the receptor-binding properties of these fibre head domains.


Assuntos
Atadenovirus/química , Proteínas do Capsídeo/química , Animais , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
11.
J Virol ; 86(3): 1888-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130531

RESUMO

The genome of bat adenovirus 2 was sequenced and analyzed. It is similar in size (31,616 bp) to the genomes of bat adenovirus 3 and canine adenoviruses 1 and 2. These four viruses are monophyletic and share an identical genome organization, with one E3 gene and four E4 genes unique to this group among the mastadenoviruses. These findings suggest that canine adenoviruses may have originated by interspecies transfer of a vespertilionid bat adenovirus.


Assuntos
Infecções por Adenoviridae/transmissão , Adenoviridae/genética , Quirópteros/virologia , Genoma Viral , Infecções por Adenoviridae/virologia , Animais , Feminino , Masculino , Fases de Leitura Aberta
12.
Virus Res ; 160(1-2): 128-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21683742

RESUMO

Murine adenoviruses (MAdV) are supposedly the oldest members of the genus Mastadenovirus. Currently, there are three distinct MAdV types known with rather different tropism and pathology. Here we report and annotate the DNA sequence of the full genome of MAdV-2. It was found to consist of 35,203 bp thus being considerably larger than the genomes of the other two MAdV types. The increased size of the MAdV-2 genome is generally due to larger genes and ORFs, although some differences in the number of ORFs were observed for the early regions E1, E3 and E4. The homologue of the 19K gene of E1B from MAdV-2 codes for 330 amino acids (aa) and is almost twice as large as from other mastadenoviruses. Accordingly, only the N-terminal half (155aa) has homology to the 19K protein. A homologue of the gene of the 12.5K protein was identified in the E3 region of MAdV-2, but not in MAdV-1 or MAdV-3. The other gene of yet unknown function in the E3 region of MAdV-2 seems to be unique. The E4 region of MAdV-2 contains three ORFs. One has similarity to the 34K gene of other AdVs. Two unique ORFs in the E4 region of MAdV-2 have no homology to any of the five and six ORFs in the E4 region of MAdV-1 or MAdV-3, respectively. Phylogenetic analyses showed that the three murine AdVs have a close common ancestor. They likely formed the first branching of the lineage of mastadenoviruses, and seem to be the most ancient representatives of this genus.


Assuntos
DNA Viral/química , DNA Viral/genética , Genoma Viral , Mastadenovirus/classificação , Mastadenovirus/genética , Animais , Análise por Conglomerados , Evolução Molecular , Mastadenovirus/isolamento & purificação , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...