Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; : 108106, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750675

RESUMO

The Hildenbrandiales, a typically saxicolous red algal order, is an early diverging florideophycean group with global significance in marine and freshwater ecosystems across diverse temperature zones. To comprehensively elucidate the diversity, phylogeny, biogeography, and evolution of this order, we conducted a thorough re-examination employing molecular data derived from nearly 700 specimens. Employing a species delimitation method, we identified Evolutionary Species Units (ESUs) within the Hildenbrandiales aiming to enhance our understanding of species diversity and generate the first time-calibrated tree and ancestral area reconstruction for this order. Mitochondrial cox1 and chloroplast rbcL markers were used to infer species boundaries, and subsequent phylogenetic reconstructions involved concatenated sequences of cox1, rbcL, and 18S rDNA. Time calibration of the resulting phylogenetic tree used a fossil record from a Triassic purportedly freshwater Hildenbrandia species and three secondary time points from the literature. Our species delimitation analysis revealed an astounding 97 distinct ESUs, quintupling the known diversity within this order. Our time-calibration analysis placed the origin of Hildenbrandiales (crown age) in the Ediacaran period, with freshwater species emerging as a monophyletic group during the later Permian to early Triassic. Phylogenetic reconstructions identified seven major clades, experiencing early diversification during the Silurian to Carboniferous period. Two major evolutionary events-colonization of freshwater habitats and obligate systemic symbiosis with a marine fungus-marked this order, leading to significant morphological alterations without a commensurate increase in species diversification. Despite the remarkable newly discovered diversity, the extant taxon diversity appears relatively constrained when viewed against an evolutionary timeline spanning over 800 million years. This limitation may stem from restricted geographic sampling or the prevalence of asexual reproduction. However, species richness estimation and rarefaction analyses suggest a substantially larger diversity yet to be uncovered-potentially four times greater. These findings drastically reshape our understanding of the deeply diverging florideophycean order Hildenbrandiales species diversity, and contribute valuable insights into this order evolutionary history and ecological adaptations. Supported by phylogenetic, ecological and morphological evidence, we established the genus Riverina gen. nov. to accommodate freshwater species of Hildenbrandiales, which form a monophyletic clade in our analyses. This marks the first step toward refining the taxonomy of the Hildenbrandiales order, a task demanding thorough revisions, notably the creation of several genera to address the polyphyletic status of Hildenbrandia. However, the limited diagnostic features pose a challenge, necessitating a fresh approach to defining genera. A potential solution lies in embracing a molecular systematic perspective, which can offer precise delineations of taxonomic boundaries.

2.
J Phycol ; 60(2): 447-464, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310617

RESUMO

This study revisited the taxonomy and diversity of brown macroalgae within the Scytosiphonaceae family in French Polynesia, which had previously been recognized as encompassing only six species. Using the chloroplast and mitochondrial genes rbcL, psbA, and cox3 as molecular markers in conjunction with morpho-anatomical observations, we unveiled the presence of 11 species spanning six genera: Chnoospora minima, Colpomenia claytoniae, Co. sinuosa [groups IIIa and IIIb], Hydroclathrus rapanuii, H. tenuis, H. tilesii, Manzaea minuta, Pseudochnoospora implexa, Rosenvingea australis, and the newly described species R. polynesiensis sp. nov. and R. tahitiensis sp. nov. This encompasses the recognition of two previously unreported genera in this region: Manzaea and Pseudochnoospora. Sequences were successfully acquired for four taxa that had been documented previously, while the absence of sequences for H. clathratus and H. tumulis in French Polynesia raises queries about their presence in this region. With these additions, the total species count now stands at 13 (including H. clathratus and H. tumulis), one being an endemic species. The molecular-assisted alpha taxonomic approach used here allowed for a critical revision of the Scytosiphonaceae species checklist for French Polynesia. The diversity revealed in this region accounts for a substantial 20% of the family's global diversity. Additionally, our study presents an updated species-level phylogeny for the Scytosiphonaceae.


Assuntos
Phaeophyceae , Filogenia , Polinésia , Cloroplastos
3.
Biology (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627008

RESUMO

Located in the heart of the South Pacific Ocean, the French Polynesian islands represent a remarkable setting for biological colonization and diversification, because of their isolation. Our knowledge of this region's biodiversity is nevertheless still incomplete for many groups of organisms. In the late 1990s and 2000s, a series of publications provided the first checklists of French Polynesian marine algae, including the Chlorophyta, Rhodophyta, Ochrophyta, and Cyanobacteria, established mostly on traditional morphology-based taxonomy. We initiated a project to systematically DNA barcode the marine flora of French Polynesia. Based on a large collection of ~2452 specimens, made between 2014 and 2023, across the five French Polynesian archipelagos, we re-assessed the marine floral species diversity (Alismatales, Cyanobacteria, Rhodophyta, Ochrophyta, Chlorophyta) using DNA barcoding in concert with morphology-based classification. We provide here a major revision of French Polynesian marine flora, with an updated listing of 702 species including 119 Chlorophyta, 169 Cyanobacteria, 92 Ochrophyta, 320 Rhodophyta, and 2 seagrass species-nearly a two-fold increase from previous estimates. This study significantly improves our knowledge of French Polynesian marine diversity and provides a valuable DNA barcode reference library for identification purposes and future taxonomic and conservation studies. A significant part of the diversity uncovered from French Polynesia corresponds to unidentified lineages, which will require careful future taxonomic investigation.

4.
Plants (Basel) ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176920

RESUMO

Part of the Indo-Chinese peninsula and located on the northwest edge of the Coral Triangle in the South China Sea, the Vietnamese coastal zone is home to a wealthy marine biodiversity associated with the regional geological setting and history, which supports a large number of marine ecosystems along a subtropical to tropical gradient. The diversity of coastal benthic marine primary producers is also a key biological factor supporting marine biological diversity. The present review provides: (1) an updated checklist of the Vietnamese marine flora, (2) a review of molecular-assisted alpha taxonomic efforts, (3) an analysis of marine floral biodiversity spatial distribution nationally and regionally (South China Sea), (4) a review of the impact of anthropogenic and environmental stressors on the Vietnamese marine flora, and (5) the efforts developed in the last decade for its conservation. Based on the studies conducted since 2013 and the nomenclatural changes that occurred during this period, an updated checklist of benthic marine algae and seagrasses consisted in a new total of 878 species, including 439 Rhodophyta, 156 Ochrophyta, 196 Chlorophyta, 87 Cyanobacteria, and 15 phanerogam seagrasses. This update contains 54 new records and 5 new species of macroalgae. The fairly poor number of new records and new species identified in the last 10 years in a "mega-diverse" country can be largely attributed to the limited efforts in exploring algal biodiversity and the limited use of genetic tools, with only 25.4% (15 species) of these new records and species made based on molecular-assisted alpha taxonomy. The South Central Coast supports the highest species diversity of marine algae, which coincides with the largest density of coral reefs along the Vietnamese coast. Vietnam holds in the South China Sea one of the richest marine floras, imputable to the country's geographical, geological, and climatic settings. However, Vietnam marine floral biodiversity is under critical threats examined here, and current efforts are insufficient for its conservation. A methodical molecular-assisted re-examination of Vietnam marine floral biodiversity is urgently needed, complemented with in-depth investigations of the main threats targeting marine flora and vulnerable taxa, and finally, conservation measures should be urgently implemented.

5.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501388

RESUMO

The brown macroalgal genus Lobophora plays important ecological roles in many marine ecosystems. This group has received much attention over the past decade, and a considerable number of new species have been identified globally. However, our knowledge of the genus diversity and ecology along south-east Asian coasts are still limited. Given the growing body of research that uses a combination of molecular and morphological data to identify cryptic species, this study investigates the diversity of Lobophora in the western Gulf of Thailand using morphological and molecular data, as well as their interactions with scleractinian corals. A total of 36 Lobophora specimens were collected from 15 sites in the western Gulf of Thailand and used for molecular and morphological analyses. One mitochondrial (cox3) and two chloroplast (psbA and rbcL) genes were amplified and sequenced for molecular phylogenetic analyses. Based primarily on phylogenetic evidence, two new species were formally described, L. chumphonensis sp. nov. and L. thailandensis sp. nov. Additionally, L. lamourouxii was newly recorded from Thailand. Two new lineages of Lobophora obscura were identified, L. obscura12 and L. obscura13. Among the Lobophora species identified, three were found in interaction with corals, the most notable of which was the massive coral Porites. Lobophora chumphonensis sp. nov. only interacted with Porites by growing on bare coral skeleton between Porites colonies. Furthermore, L. obscura13 was observed under the branching coral Pocillopora. Our findings revealed that Lobophora presented both effects and absence of effects on coral. A thorough understanding of Lobophora diversity and ecology is essential for ongoing and future research on coral-macroalgal ecological relationships.

6.
Mol Ecol ; 31(24): 6473-6488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36200326

RESUMO

Coastal refugia during the Last Glacial Maximum (~21,000 years ago) have been hypothesized at high latitudes in the North Atlantic, suggesting marine populations persisted through cycles of glaciation and are potentially adapted to local environments. Here, whole-genome sequencing was used to test whether North Atlantic marine coastal populations of the kelp Alaria esculenta survived in the area of southwestern Greenland during the Last Glacial Maximum. We present the first annotated genome for A. esculenta and call variant positions in 54 individuals from populations in Atlantic Canada, Greenland, Faroe Islands, Norway and Ireland. Differentiation across populations was reflected in ~1.9 million single nucleotide polymorphisms, which further revealed mixed ancestry in the Faroe Islands individuals between putative Greenlandic and European lineages. Time-calibrated organellar phylogenies suggested Greenlandic populations were established during the last interglacial period more than 100,000 years ago, and that the Faroe Islands population was probably established following the Last Glacial Maximum. Patterns in population statistics, including nucleotide diversity, minor allele frequencies, heterozygosity and linkage disequilibrium decay, nonetheless suggested glaciation reduced Canadian Atlantic and Greenlandic populations to small effective sizes during the most recent glaciation. Functional differentiation was further reflected in exon read coverage, which revealed expansions unique to Greenland in 337 exons representing 162 genes, and a modest degree of exon loss (103 exons from 56 genes). Altogether, our genomic results provide strong evidence that A. esculenta populations were resilient to past climatic fluctuations related to glaciations and that high-latitude populations are potentially already adapted to local conditions as a result.


Assuntos
Kelp , Refúgio de Vida Selvagem , Canadá , Frequência do Gene , Variação Genética/genética , Filogenia
7.
Mol Phylogenet Evol ; 168: 107408, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031471

RESUMO

In the study of the evolution of biological complexity, a reliable phylogenetic framework is needed. Many attempts have been made to resolve phylogenetic relationships between higher groups (i.e., interordinal) of brown algae (Phaeophyceae) based on molecular evidence, but most of these relationships remain unclear. Analyses based on small multi-gene data (including chloroplast, mitochondrial and nuclear sequences) have yielded inconclusive and sometimes contradictory results. To address this problem, we have analyzed 32 nuclear protein-coding sequences in 39 Phaeophycean species belonging to eight orders. The resulting nuclear-based phylogenomic trees provide virtually full support for the phylogenetic relationships within the studied taxa, with few exceptions. The relationships largely confirm phylogenetic trees based on nuclear, chloroplast and mitochondrial sequences, except for the placement of the Sphacelariales with weak bootstrap support. Our study indicates that nuclear protein-coding sequences provide significant support to conclusively resolve phylogenetic relationships among Phaeophyceae, and may be a powerful approach to fully resolve interordinal relationships with increased taxon sampling.


Assuntos
Phaeophyceae , Núcleo Celular/genética , Proteínas Nucleares , Fases de Leitura Aberta , Phaeophyceae/genética , Filogenia
8.
J Phycol ; 57(6): 1721-1738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510441

RESUMO

The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks. Genomes were sequenced from across the global distribution of Alaria (including Alaria crassifolia, A. praelonga, A. crispa, A. marginata, and A. esculenta), representing over 550 GB of data and over 2.2 billion paired reads. Genomic datasets retrieved 3,814 and 4,536 single-nucleotide polymorphisms (SNPs) for mitochondrial and chloroplast genomes, respectively, and upwards of 148,542 high-quality nuclear SNPs. WGS revealed an Arctic lineage of Alaria, which we hypothesize represents the synonymized taxon A. grandifolia. The SNP datasets also revealed inconsistent topologies across genomic compartments, and hybridization (i.e., phylogenetic networks) between Pacific A. praelonga, A. crispa, and putative A. grandifolia, and between some lineages of the A. marginata complex. Our analysis demonstrates the potential for WGS data to advance our understanding of evolution and biodiversity beyond amplicon sequencing, and that hybridization is potentially an important mechanism contributing to novel lineages within Alaria. We also emphasize the importance of surveying phylogenetic signals across organellar and nuclear genomes, such that models of mixed ancestry become integrated into our evolutionary and taxonomic understanding.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Kelp , Sequência de Bases , Hibridização Genética , Kelp/classificação , Kelp/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
9.
Harmful Algae ; 98: 101888, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33129466

RESUMO

Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.


Assuntos
Dinoflagellida , Espectrometria de Massas em Tandem , Cromatografia Líquida , Dinoflagellida/genética , Ilhas , Malásia , Oceano Pacífico , Filogenia , Polinésia
10.
Mol Phylogenet Evol ; 150: 106845, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360706

RESUMO

The subclass Corallinophycidae is the only group of red algae characterized by the presence of calcite crystals in their cell walls. Except for the Rhodogorgonales, the remaining orders - collectively called corallines - are diverse and widely distributed, having calcified cell walls and highly variable morphology. Corallines constitute the group with the richest fossil record among marine algae. In the present study, we investigate the evolutionary history of the subclass Corallinophycidae and provide a time-calibrated phylogeny to date the radiation of the crown group and its main lineages. We use a multi-locus dataset with an extensive taxon sampling and comprehensive collection of fossil records, carefully assigned to corallines, to reconstruct a time-calibrated phylogeny of this subclass. Our molecular clock analyses suggest that the onset of crown group diversification of Corallinophycidae started in the Lower Jurassic and sped up in the Lower Cretaceous. The divergence time of the oldest order Sporolithales is estimated in the Lower Cretaceous followed by the remaining orders. We discuss the long period of more than 300 million years between the early Paleozoic records attributed to the stem group of Corallinophycidae and the radiation of the crown group. Our inferred phylogeny yields three highly-supported suprageneric lineages for the order Corallinales; we confirm the family Mastophoraceae and amend circumscription of the families Corallinaceae and Lithophyllaceae. These three families are distinguished by a combination of vegetative and reproductive features. In light of the phylogeny, we discuss the evolutionary trends of eleven morphological characters. In addition, we also highlight homoplasious characters and selected autapomorphies emerging in particular taxa.


Assuntos
Rodófitas/classificação , Teorema de Bayes , Evolução Biológica , Parede Celular/química , DNA de Plantas/química , DNA de Plantas/metabolismo , Fósseis , Ligação Genética , Filogenia , Rodófitas/genética
11.
J Phycol ; 56(3): 592-607, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32159226

RESUMO

Distributed in tropical and warm-temperate waters worldwide, Lobophora species are found across the Greater Caribbean (i.e., Caribbean sensu stricto, Gulf of Mexico, Florida, the Bahamas, and Bermuda). We presently discuss the diversity, ecology, biogeography, and evolution of the Greater Caribbean Lobophora species based on previous studies and an extensive number of samples collected across the eastern, southern, and to a lesser extent western Caribbean. A total of 18 Lobophora species are now documented from the Greater Caribbean, of which five are newly described (L. agardhii sp. nov., L. dickiei sp. nov., L. lamourouxii sp. nov., L. richardii sp. nov., and L. setchellii sp. nov.). Within the Greater Caribbean, the eastern Caribbean and the Central Province are the most diverse ecoregion and province (16 spp.), respectively. Observed distribution patterns indicate that Lobophora species from the Greater Caribbean have climate affinities (i.e., warm-temperate vs. tropical affinities). In total, 11 Lobophora species exclusively occur in the Greater Caribbean; six are present in the western Atlantic; two in the Indo-Pacific; and one in the eastern Pacific. Biogeographic analyses support that no speciation occurred across the Isthmus of Panama, and that the Greater Caribbean acted as a recipient region for species from the Indo-Pacific and as a region of diversification as well as a donor region to the North-eastern Atlantic. The Greater Caribbean is not an evolutionary dead end for Lobophora, but instead generates and exports diversity. Present results illustrate how sampling based on DNA identification is reshaping biogeographic patterns, as we know them.


Assuntos
Phaeophyceae , Região do Caribe , Ecologia , Florida , Golfo do México , Filogenia
12.
J Phycol ; 56(2): 346-357, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31849038

RESUMO

The brown alga Lobophora (Dictyotales, Phaeophyceae) is an important macroalga in the North-eastern Atlantic archipelagos (i.e., Macaronesia). Notably in the Canaries it can dominate benthic assemblages. While the genus has been the subject of several ecological studies in the Canaries, no study has yet been conducted to assess species-level diversity of Lobophora in Macaronesia. We reassessed the diversity of Lobophora in Macaronesia, reporting the presence of seven species (L. caboverdeana sp. nov., L. canariensis, L. dagamae sp. nov., L. delicata, L. dispersa, L. littlerorum, and L. schneideri). Lobophora spp. from Macaronesia are morphologically and ecologically distinguishable. In the Canaries, L. schneideri dominates the photophilic assemblages from the intertidal to 20-30 m depth. Lobophora dagamae sp. nov. grows in less illuminated shallow habitats, and replaces L. schneideri from 30 to ~80 m. Lobophora canariensis also has a wide vertical distribution, from the intertidal to deep waters, while L. delicata, L. dispersa and L. littlerorum grow in shallow waters. The dominance of species with an upright habit versus prostrate or crustose species may be mediated by the pressure of herbivores. Four species have an amphi-Atlantic distribution: L. littlerorum, L. canariensis, L. delicata, and L. schneideri. Lobophora schneideri and L. delicata are furthermore distributed in the Mediterranean Sea. By sampling a pivotal region in the Atlantic, this study significantly improves our knowledge of Lobophora biogeography in the Atlantic Ocean. Macaronesia constitutes a species-poor region for Lobophora where no diversification events occurred, and a region of overlap between the Greater Caribbean and the Indo-Pacific.


Assuntos
Phaeophyceae , Oceano Atlântico , Região do Caribe , Mar Mediterrâneo , Filogenia
13.
Sci Rep ; 9(1): 993, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700781

RESUMO

In the marine environment, macroalgae face changing environmental conditions and some species are known for their high capacity to adapt to the new factors of their ecological niche. Some macroalgal metabolites play diverse ecological functions and belong to the adaptive traits of such species. Because algal metabolites are involved in many processes that shape marine biodiversity, understanding their sources of variation and regulation is therefore of utmost relevance. This work aims at exploring the possible sources of metabolic variations with time and space of four common algal species from the genus Lobophora (Dictyotales, Phaeophyceae) in the New Caledonian lagoon using a UHPLC-HRMS metabolomic fingerprinting approach. While inter-specific differences dominated, a high variability of the metabolome was noticed for each species when changing their natural habitats and types of substrates. Fatty acids derivatives and polyolefins were identified as chemomarkers of these changing conditions. The four seaweeds metabolome also displayed monthly variations over the 13-months survey and a significant correlation was made with sea surface temperature and salinity. This study highlights a relative plasticity for the metabolome of Lobophora species.


Assuntos
Recifes de Corais , Meio Ambiente , Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Biomarcadores/metabolismo , Análise Discriminante , Análise dos Mínimos Quadrados , Metabolômica , Análise de Componente Principal , Fatores de Tempo
14.
J Phycol ; 55(3): 611-624, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30805921

RESUMO

Lobophora is a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep-water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed that Lobophora species diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo-Pacific. This study used three molecular markers (cox3, rbcL, psbA), different single-marker species delimitation methods (GMYC, ABGD, PTP), and morphological evidence to evaluate Lobophora species diversity in the Western Atlantic and the Eastern Pacific oceans. Cox3 provided the greatest number of primary species hypotheses(PSH), followed by rbcL and then psbA. GMYC species delimitation analysis was the most conservative across all three markers, followed by PTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinct Lobophora species were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described: L. adpressa sp. nov., L. cocoensis sp. nov., L. colombiana sp. nov., L. crispata sp. nov., L. delicata sp. nov., L. dispersa sp. nov., L. panamensis sp. nov., and L. tortugensis sp. nov. This study showed that the best approach to confidently identify Lobophora species is to analyze DNA sequences (preferably cox3 and rbcL) followed by comparative morphological and geographical assessment.


Assuntos
Phaeophyceae , Recifes de Corais , Geografia , Oceano Pacífico , Filogenia
15.
Mol Phylogenet Evol ; 110: 81-92, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28279809

RESUMO

The tropical to warm-temperate marine brown macroalgal genus Lobophora (Dictyotales, Phaeophyceae) recently drew attention because of its striking regional diversity. In this study we reassess Lobophora global species diversity, and species distributions, and explore how historical factors have shaped current diversity patterns. We applied a series of algorithmic species delineation techniques on a global mitochondrial cox3 dataset of 598 specimens, resulting in an estimation of 98-121 species. This diversity by far exceeds traditional diversity estimates based on morphological data. A multi-locus time-calibrated species phylogeny using a relaxed molecular clock, along with DNA-confirmed species distribution data was used to analyse ancestral area distributions, dispersal-vicariance-founder events, and temporal patterns of diversification under different biogeographical models. The origin of Lobophora was estimated in the Upper Cretaceous (-75 to -60 MY), followed by gradual diversification until present. While most speciation events were inferred within marine realms, founder events also played a non-negligible role in Lobophora diversification. The Central Indo-Pacific showed the highest species diversity as a result of higher speciation events in this region. Most Lobophora species have small ranges limited to marine realms. Lobophora probably originated in the Tethys Sea and dispersed repeatedly in the Atlantic (including the Gulf of Mexico) and Pacific Oceans. The formation of the major historical marine barriers (Terminal Tethyan event, Isthmus of Panama, Benguela upwelling) did not act as important vicariance events. Long-distance dispersal presumably represented an important mode of speciation over evolutionary time-scales. The limited geographical ranges of most Lobophora species, however, vouch for the rarity of such events.


Assuntos
Phaeophyceae/classificação , Filogenia , Filogeografia , Alga Marinha/classificação , Animais , Biodiversidade , Especificidade da Espécie , Simpatria , Fatores de Tempo
16.
Front Microbiol ; 7: 316, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047453

RESUMO

While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.

17.
Sci Rep ; 6: 18637, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728003

RESUMO

Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.


Assuntos
Alelopatia , Antozoários , Ecossistema , Phaeophyceae , Animais , Biodiversidade , Fracionamento Químico , Phaeophyceae/química , Phaeophyceae/fisiologia
18.
Environ Sci Pollut Res Int ; 22(20): 15347-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25561256

RESUMO

The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of alkane 1-monooxygenase, haloalkane dehalogenase, and flavin-binding monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.


Assuntos
Hidrocarbonetos/metabolismo , Metabolismo dos Lipídeos , Marinobacter/metabolismo , Poluição por Petróleo , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Marinobacter/genética , Marinobacter/isolamento & purificação , Filogenia
19.
J Phycol ; 50(6): 1101-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26988791

RESUMO

Until the recent use of molecular markers, species diversity of Lobophora, an ecologically important brown algal genus with a worldwide distribution in temperate and tropical seas, has been critically underestimated. Using a DNA-based taxonomic approach, we re-examined diversity of the genus from New Caledonia in the Southwest Pacific Ocean. First, species were delineated using general mixed Yule coalescent-based and barcoding gap approaches applied to a mitochondrial cox3 data set. Results were subsequently confirmed using chloroplast psbA and rbcL data sets. Species delimitation analyses agreed well across markers and delimitation algorithms, with the barcoding gap approach being slightly more conservative. Analyses of the cox3 data set resulted in 31-39 molecular operational taxonomic units (MOTUs), four of which are previously described species (L. asiatica, L. crassa, L. nigrescens s.l., L. pachyventera). Of the remaining MOTUs for which we obtained a representative number of sequences and results are corroborated across analyses and genes, we described 10 species de novo: L. abaculusa, L. abscondita, L. densa, L. dimorpha, L. gibbera, L. hederacea, L. monticola, L. petila, L. rosacea, and L. undulata. Our study presents an excellent case of how a traditional morphology-based taxonomy fails to provide accurate estimates of algal diversity. Furthermore, the level of Lobophora diversity unveiled from a single locality in the Pacific Ocean raises important questions with respect to the global diversity of the genus, the distributions and range sizes of the individual species, as well as the mechanisms facilitating coexistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...