Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(11): 2857-2868, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35617018

RESUMO

Coronaviruses (CoVs) have been responsible for three major outbreaks since the beginning of the 21st century, and the emergence of the recent COVID-19 pandemic has resulted in considerable efforts to design new therapies against coronaviruses. Thus, it is crucial to understand the structural features of their major proteins related to the virus-host interaction. Several studies have shown that from the seven known CoV human pathogens, three of them use the human Angiotensin-Converting Enzyme 2 (hACE-2) to mediate their host's cell entry: SARS-CoV-2, SARS-CoV, and HCoV-NL63. Therefore, we employed quantum biochemistry techniques within the density function theory (DFT) framework and the molecular fragmentation with conjugate caps (MFCC) approach to analyze the interactions between the hACE-2 and the spike protein-RBD of the three CoVs in order to map the hot-spot residues that form the recognition surface for these complexes and define the similarities and differences in the interaction scenario. The total interaction energy evaluated showed a good agreement with the experimental binding affinity order: SARS-2 > SARS > NL63. A detailed investigation revealed the energetically most relevant regions of hACE-2 and the spike protein for each complex, as well as the key residue-residue interactions. Our results provide valuable information to deeply understand the structural behavior and binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between CoVs S protein and hACE-2.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Coronavirus Humano NL63/metabolismo , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Plant J ; 105(1): 136-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111398

RESUMO

Grass cell walls have hydroxycinnamic acids attached to arabinosyl residues of arabinoxylan (AX), and certain BAHD acyltransferases are involved in their addition. In this study, we characterized one of these BAHD genes in the cell wall of the model grass Setaria viridis. RNAi silenced lines of S. viridis (SvBAHD05) presented a decrease of up to 42% of ester-linked p-coumarate (pCA) and 50% of pCA-arabinofuranosyl, across three generations. Biomass from SvBAHD05 silenced plants exhibited up to 32% increase in biomass saccharification after acid pre-treatment, with no change in total lignin. Molecular dynamics simulations suggested that SvBAHD05 is a p-coumaroyl coenzyme A transferase (PAT) mainly involved in the addition of pCA to the arabinofuranosyl residues of AX in Setaria. Thus, our results provide evidence of p-coumaroylation of AX promoted by SvBAHD05 acyltransferase in the cell wall of the model grass S. viridis. Furthermore, SvBAHD05 is a promising biotechnological target to engineer crops for improved biomass digestibility for biofuels, biorefineries and animal feeding.


Assuntos
Aciltransferases/metabolismo , Ácidos Cumáricos/metabolismo , Setaria (Planta)/metabolismo , Xilanos/metabolismo , Biomassa , Parede Celular/metabolismo , Genes de Plantas , Redes e Vias Metabólicas , Polissacarídeos/metabolismo , Setaria (Planta)/enzimologia , Setaria (Planta)/genética
3.
J Phys Chem A ; 121(39): 7414-7423, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28902515

RESUMO

The acidity of organic compounds is highly relevant to understanding several biological processes. Although the relevance and challenges in estimating pKa values of organic acids is recognized by several reported works in the literature, there is a lack in determining the acidity of amides. This paper presents an experimental/theoretical combined investigation on the acid dissociation of the compound 6,7-dinitro-1,4-dihydroquinoxaline-2,3-dione (DNQX), a well-established antagonist of ionotropic glutamate receptor GluA2. DNQX was synthesized, and its two acidic constants were determined by UV-vis spectroscopy. The experimental pKa of 6.99 ± 0.02 and 10.57 ± 0.01 indicate that DNQX mainly exists as an anionic form (DNQXA1) in physiological media, which was also confirmed by 1H NMR analysis. Five computational methods were applied for estimating the theoretical pKa values of DNQX, including B3LYP, M06-2X, ωB97XD, and CBS-QB3, which were able to provide reasonable estimates for pKa associated with DNQX. Molecular dynamics studies have demonstrated that DNQXA1' binds more effectively to the pocket of the GluA2 than neutral DNQX, and this fact is coherent to the interactions between amidic oxygens and Arg845 being the main interactions of this host-guest system. Moreover, interaction of GluA2 with endogenous glutamate is stronger than that with DNQXA1, which is in agreement with literature. To the best of our knowledge, we report herein an unprecedented approach involving acidity of the antagonist DNQX, as well as the possible implications in binding to GluA2.

4.
FEBS Lett ; 579(28): 6505-10, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16289057

RESUMO

The 1.7A resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved beta-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA.


Assuntos
Bacillus subtilis/enzimologia , Endo-1,4-beta-Xilanases/química , Temperatura Alta , Sítios de Ligação , Catálise , Cristalografia , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...