Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(5): 1598-1605, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279849

RESUMO

Xylella fastidiosa is the causal agent of important crop diseases and is transmitted by xylem-sap-feeding insects. The bacterium colonizes xylem vessels and can persist with a commensal or pathogen lifestyle in more than 500 plant species. In the past decade, reports of X. fastidiosa across the globe have dramatically increased its known occurrence. This raises important questions: How does X. fastidiosa interact with the different host plants? How does the bacterium interact with the plant immune system? How does it influence the host's microbiome? We discuss recent strain genetic typing and plant transcriptome and microbiome analyses, which have advanced our understanding of factors that are important for X. fastidiosa plant infection.


Assuntos
Microbiota , Xylella , Doenças das Plantas/microbiologia , Plantas
2.
mBio ; 11(3)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576677

RESUMO

Multihost bacteria have to rapidly adapt to drastic environmental changes, relying on a fine integration of multiple stimuli for an optimal genetic response. Erwinia carotovora spp. are phytopathogens that cause soft-rot disease. Strain Ecc15 in particular is a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a unique gene, evf, that encodes the Erwinia virulence factor (Evf), which is a major determinant for infection of the D. melanogaster gut. However, the factors involved in the regulation of evf expression are poorly understood. We investigated whether evf could be controlled by quorum sensing as, in the Erwinia genus, quorum sensing regulates pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show that transcription of evf is positively regulated by quorum sensing in Ecc15 via acyl-homoserine lactone (AHL) signal synthase ExpI and AHL receptors ExpR1 and ExpR2. We also show that the load of Ecc15 in the gut depends upon the quorum sensing-mediated regulation of evf Furthermore, we demonstrate that larvae infected with Ecc15 suffer a developmental delay as a direct consequence of the regulation of evf via quorum sensing. Finally, we demonstrate that evf is coexpressed with plant cell wall-degrading enzymes (PCWDE) during plant infection in a quorum sensing-dependent manner. Overall, our results show that Ecc15 relies on quorum sensing to control production of both pectolytic enzymes and Evf. This regulation influences the interaction of Ecc15 with its two known hosts, indicating that quorum sensing signaling may impact bacterial dissemination via insect vectors that feed on rotting plants.IMPORTANCE Integration of genetic networks allows bacteria to rapidly adapt to changing environments. This is particularly important in bacteria that interact with multiple hosts. Erwinia carotovora is a plant pathogen that uses Drosophila melanogaster as a vector. To interact with these two hosts, Ecc15 uses different sets of virulence factors: plant cell wall-degrading enzymes to infect plants and the Erwinia virulence factor (evf) to infect Drosophila Our work shows that, despite the virulence factors being specific for each host, both sets are coactivated by homoserine lactone quorum sensing and by the two-component GacS/A system in infected plants. This regulation is essential for Ecc15 loads in the gut of Drosophila and minimizes the developmental delay caused by the bacteria with respect to the insect vector. Our findings provide evidence that coactivation of the host-specific factors in the plant may function as a predictive mechanism to maximize the probability of transit of the bacteria between hosts.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Percepção de Quorum/genética , Fatores de Virulência/genética , Animais , Drosophila melanogaster/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Fatores de Virulência/metabolismo
3.
mBio ; 8(3)2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536283

RESUMO

Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pectobacterium carotovorum/fisiologia , Percepção de Quorum , Fatores de Virulência/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Pectobacterium carotovorum/efeitos dos fármacos , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidade , Fatores de Transcrição/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...