Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 146: 25-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25176449

RESUMO

Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 µM and 60 µM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and severity of the disease caused by vinblastine-resistant L. amazonensis promastigotes. Taken together, these data suggest that ecto-enzymes could be potential therapeutic targets in the struggle against the spread of leishmaniasis, a neglected world-wide public health problem.


Assuntos
Adenosina Trifosfatases/metabolismo , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/parasitologia , Moduladores de Tubulina/farmacologia , Vimblastina/farmacologia , Animais , Cricetinae , Resistência a Medicamentos , Humanos , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Fenótipo , Organismos Livres de Patógenos Específicos
2.
PLoS One ; 9(9): e106852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203926

RESUMO

In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H(+)-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H(+)-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Estágios do Ciclo de Vida , Trypanosoma rangeli/enzimologia , Trypanosoma rangeli/crescimento & desenvolvimento , Proliferação de Células , Difosfatos/metabolismo , Hidrólise , Trypanosoma rangeli/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA