Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cell Biochem ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902886

RESUMO

BACKGROUND: Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM: To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS: Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS: The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION: Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.

3.
Adv Healthc Mater ; 12(26): e2300828, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312636

RESUMO

Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.


Assuntos
Nanotubos de Carbono , Células-Tronco Neurais , Nanotubos de Carbono/química , Engenharia Tecidual , Diferenciação Celular
4.
Org Biomol Chem ; 21(7): 1531-1536, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722743

RESUMO

Fluorescence imaging is a powerful and widely used method to visualize and study living organisms. However, fungi are notoriously difficult to visualize using fluorescence microscopy, given that their cell wall represents a diffusion barrier, and the synthetic organic dyes available are very limited when compared to molecular probes available for other organisms. Moreover, these dyes are usually available in only one colour, preventing co-staining experiments. To fill this gap, curcumin-based molecular probes were designed based on the rationale that curcumin is fluorescent and has moderate toxicity toward fungi, implying its ability to cross the cell wall to reach targets in the intracellular compartments. A family of boron diketonate complexes was synthesized, based on a curcumin backbone, tuning their emission color from blue to red. These probes did not present noticeable toxicity to filamentous fungus and, when applied to their visualization, readily entered the cells and precisely localized in sub-cellular organelles, enabling their visualization.


Assuntos
Curcumina , Curcumina/farmacologia , Sondas Moleculares , Corantes Fluorescentes , Imagem Óptica , Fungos
5.
Brain ; 146(7): 2672-2693, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848323

RESUMO

Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.


Assuntos
Doenças do Sistema Nervoso , Traumatismos da Medula Espinal , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Recuperação de Função Fisiológica , Medula Espinal , Ensaios Clínicos como Assunto
6.
Neurochem Int ; 159: 105402, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843422

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD) metabolism is involved in redox and non-redox reactions that regulate several processes including differentiation of cells of different origins. Here, the role of NAD metabolism in neuronal differentiation, which remains elusive so far, was investigated. MATERIAL AND METHODS: A protein-protein interaction network between neurotrophin signaling and NAD metabolic pathways was built. Expression of NAD biosynthetic enzymes in SH-SY5Y cells during retinoic acid (RA)/brain derived neurotrophic factor (BDNF) differentiation, was evaluated. The effects of NAD biosynthetic enzymes QPRT and NAPRT inhibition in neurite outgrowth, cell viability, NAD availability and histone deacetylase (HDAC) activity, were analyzed in RA- and BDNF-differentiated cells. RESULTS: Bioinformatics analysis revealed the interaction between NAD biosynthetic enzyme NMNAT1 and NTRK2, a receptor activated by RA/BDNF sequential treatment. Differences were found in the expression of NAD biosynthetic enzymes during neuronal differentiation, namely, increased QPRT gene expression along the course of RA/BDNF treatment and NAPRT protein expression after a 5-day treatment with RA. QPRT inhibition in BDNF-differentiated SH-SY5Y cells resulted in less neuritic length per cell, decreased expression of the neuronal marker ß-III Tubulin and also decreased NAD+ levels and HDAC activity. NAPRT inhibition had no effect in neuritic length per cell, NAD+ levels and HDAC activity. Of note, NAD supplementation along with RA, but not with BDNF, resulted in considerable cell death. CONCLUSIONS: Taken together, our results show the involvement of NAD metabolism in neuronal differentiation, specifically, the importance of QPRT-mediated NAD biosynthesis in BDNF-associated SH-SY5Y differentiation and suggest additional roles for NAPRT beyond NAD production in RA-differentiated cells.


Assuntos
Neuroblastoma , Nicotinamida-Nucleotídeo Adenililtransferase , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , NAD/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Tubulina (Proteína)/metabolismo
7.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626723

RESUMO

Hypertension is the most determinant risk factor for cardiovascular diseases. Early intervention and future therapies targeting hypertension mechanisms may improve the quality of life and clinical outcomes. Hypertension has a complex multifactorial aetiology and was recently associated with protein homeostasis (proteostasis). This work aimed to characterize proteostasis in easy-to-access plasma samples from 40 individuals, 20 with controlled hypertension and 20 age- and gender-matched normotensive individuals. Proteostasis was evaluated by quantifying the levels of protein aggregates through different techniques, including fluorescent probes, slot blot immunoassays and Fourier-transform infrared spectroscopy (FTIR). No significant between-group differences were observed in the absolute levels of various protein aggregates (Proteostat or Thioflavin T-stained aggregates; prefibrillar oligomers and fibrils) or total levels of proteostasis-related proteins (Ubiquitin and Clusterin). However, significant positive associations between Endothelin 1 and protein aggregation or proteostasis biomarkers (such as fibrils and ubiquitin) were only observed in the hypertension group. The same is true for the association between the proteins involved in quality control and protein aggregates. These results suggest that proteostasis mechanisms are actively engaged in hypertension as a coping mechanism to counteract its pathological effects in proteome stability, even when individuals are chronically medicated and presenting controlled blood pressure levels.


Assuntos
Hipertensão , Proteostase , Humanos , Agregados Proteicos , Proteoma , Proteostase/fisiologia , Qualidade de Vida , Ubiquitina
8.
ACS Appl Mater Interfaces ; 14(17): 19116-19128, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446549

RESUMO

Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Tecido Adiposo , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
9.
ACS Med Chem Lett ; 13(3): 443-448, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35300075

RESUMO

Reversing protein aggregation within cells may be an important tool to fight protein-misfolding disorders such as Alzheimer's, Parkinson's, and cardiovascular diseases. Here we report the design and synthesis of a family of steroid-quinoline hybrid compounds based on the framework combination approach. This set of hybrid compounds effectively inhibited Aß1-42 self-aggregation in vitro by delaying the exponential growth phase and/or reducing the quantity of fibrils in the steady state. Their disaggregation efficacy was further demonstrated against preaggregated Aß1-42 peptides in cellular assays upon their endocytosis by neuroblastoma cells, as they reverted both the number and the average area of fibrils back to basal levels. The antiaggregation effect of these hybrids was further tested and demonstrated in a cellular model of general protein aggregation expressing a protein aggregation fluorescent sensor. Together, our results show that the new cholesterol-quinoline hybrids possess wide and marked disaggregation capacities and are therefore promising templates for the development of new drugs to deal with conformational disorders.

10.
NPJ Regen Med ; 6(1): 80, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815414

RESUMO

Replacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts' collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone-implant interface and deliver personalized stimulation to peri-implant tissues.

11.
Mol Neurobiol ; 58(2): 668-688, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33009641

RESUMO

The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Sistema de Sinalização das MAP Quinases , Neuritos/metabolismo , Neurogênese , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HeLa , Humanos , Ligantes , Modelos Biológicos , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Ratos Wistar , Saccharomyces cerevisiae/metabolismo
12.
Biotechnol Bioeng ; 117(8): 2610-2628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369185

RESUMO

Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since  their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these "pharming" platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Alimentos , Engenharia Genética , Peptídeos , Animais , Produtos Biológicos , Biotecnologia , Hipertensão/tratamento farmacológico
13.
Am J Hypertens ; 33(2): 119-123, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-31560738

RESUMO

BACKGROUND: Physical exercise is a well-established strategy to control blood pressure. Nonetheless, its effects on protein homeostasis in individuals with hypertension are not clearly defined. AIMS: Evaluate proteostasis, quality of life, and inflammation, oxidative stress, and vasoactive biomarkers in adults with hypertension regarding reported exercise habits. METHODS: Twenty individuals were recruited in a health-care centre, 10 regular exercisers (age: 68.3 ± 4.2 years) and 10 age-matched individuals without regular exercise participation (age: 67.7 ± 5.1 years). Proteostasis and the levels of ubiquitin, heat shock protein 70 (Hsp70), endothelial nitric oxide synthase (eNOS), matrix metalloproteinases 2 (MMP-2), tissue inhibitor of MMP-2 (TIMP-2), connexin 43 (Cx43) and extracellular superoxide dismutase-3 (SOD-3) were assessed in plasma using immunoblotting techniques (western blot or slot blot) and Fourier-transform infrared spectroscopy (FTIR). Quality of life was assessed using the Short Form 36 (SF-36) version 2.0 questionnaire. RESULTS: Significant higher levels of interleukin (IL)-6 (P = 0.014), eNOS (P = 0.011), Cx43 (P = 0.020), TIMP-2 (P = 0.038), and SOD-3 (P = 0.001), with a fold increase of 1.5, 1.2, 2.1, 1.3, and 1.2, respectively, were found in the exercise group. The overall quality of life (60.1 ± 4.3 vs. 53.2 ± 5.9, P = 0.009), as well as mental health domain (59.4 ± 7.9 vs. 50.7 ± 7.2, P = 0.024) were significantly higher in the exercise group. Multivariate analysis by FTIR showed that the age-matched group is characterized by peaks related with antiparallel ß-sheet, whereas exercise group is characterized by peaks related to random coils, ß-sheet, and α-helix. CONCLUSIONS: Individuals with regular exercise participation showed better proteostasis, quality of life, inflammatory profile, antioxidant defenses, and eNOS levels.


Assuntos
Pressão Sanguínea , Exercício Físico , Estilo de Vida Saudável , Hipertensão/terapia , Mediadores da Inflamação/sangue , Proteostase , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Saúde Mental , Pessoa de Meia-Idade , Estresse Oxidativo , Qualidade de Vida , Fatores de Tempo
14.
Front Aging Neurosci ; 11: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105551

RESUMO

Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.

15.
Sci Rep ; 9(1): 5001, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899061

RESUMO

Cosurface electrode architectures are able to deliver personalized electric stimuli to target tissues. As such, this technology holds potential for a variety of innovative biomedical devices. However, to date, no detailed analyses have been conducted to evaluate the impact of stimulator architecture and geometry on stimuli features. This work characterizes, for the first time, the electric stimuli delivered to bone cellular tissues during in vitro experiments, when using three capacitive architectures: stripped, interdigitated and circular patterns. Computational models are presented that predict the influence of cell confluence, cosurface architecture, electrodes geometry, gap size between electrodes and power excitation on the stimuli delivered to cellular layers. The results demonstrate that these stimulators are able to deliver osteoconductive stimuli. Significant differences in stimuli distributions were observed for different stimulator designs and different external excitations. The thickness specification was found to be of utmost importance. In vitro experiments using an osteoblastic cell line highlight that cosurface stimulation at a low frequency can enhance osteoconductive responses, with some electrode-specific differences being found. A major feature of this type of work is that it enables future detailed analyses of stimuli distribution throughout more complex biological structures, such as tissues and organs, towards sophisticated biodevice personalization.


Assuntos
Simulação por Computador , Estimulação Elétrica/instrumentação , Próteses e Implantes , Eletrodos , Humanos , Medicina de Precisão
16.
Microsc Microanal ; 25(1): 229-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30714554

RESUMO

Tetraspanins, such as CD81, can form lateral associations with each other and with other transmembrane proteins. These interactions may underlie CD81 functions in multiple cellular processes, such as adhesion, morphology, migration, and differentiation. Since CD81's role in neuronal cells' migration has not been established, we here evaluated effects of CD81 on the migratory phenotype of SH-SY5Y neuroblastoma cells. CD81 was found enriched at SH-SY5Y cell's membrane, co-localizing with its interactor filamentous-actin (F-actin) in migratory relevant structures of the leading edge (filopodia, stress fibers, and adhesion sites). CD81 overexpression increased the number of cells with a migratory phenotype, in a potentially phosphatidylinositol 3 kinase (PI3K)-Ak strain transforming (AKT) mediated manner. Indeed, CD81 also co-localized with AKT, a CD81-interactor and actin remodeling agent, at the inner leaflet of the plasma membrane. Pharmacologic inhibition of PI3K, the canonical AKT activator, led both to a decrease in the acquisition of a migratory phenotype and to a redistribution of intracellular CD81 and F-actin into cytoplasmic agglomerates. These findings suggest that in neuronal-like cells CD81 bridges active AKT and actin, promoting the actin remodeling that leads to a motile cell morphology. Further studies on this CD81-mediated mechanism will improve our knowledge on important physiological and pathological processes such as cell migration and differentiation, and tumor metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia , Actinas/efeitos dos fármacos , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular , Humanos , Neuroblastoma , Neurônios/patologia , Proteína Oncogênica v-akt , Fosfatidilinositol 3-Quinases/metabolismo , Pseudópodes , Fibras de Estresse
17.
Chem Asian J ; 14(6): 859-863, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30632287

RESUMO

A fluorescent dye was decorated with water-soluble pyridinium groups in order to be applied in the detection of cyclodextrins or DNA. The dye displays an enhancement of its emission intensity when the internal rotations are restricted due to the formation of an inclusion complex with cyclodextrins or upon interaction with DNA. In vivo, the fluorescent probe can stain protein aggregates with a selectivity comparable to the widely used Proteostat®.


Assuntos
Corantes Fluorescentes/química , Agregados Proteicos , Espectrometria de Fluorescência , Sobrevivência Celular/efeitos dos fármacos , Ciclodextrinas/química , DNA/química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Ligação de Hidrogênio , Leupeptinas/química , Microscopia Confocal , Bases de Schiff/química
18.
Colloids Surf B Biointerfaces ; 167: 93-103, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627682

RESUMO

Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10-10C cm-2 that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 µm) over non-poled aligned nanofibers, and by 50% (+100 µm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications.


Assuntos
Nanofibras/química , Tecido Nervoso/citologia , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas Eletroquímicas , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Tecido Nervoso/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Ratos Wistar
19.
Mol Cell Neurosci ; 85: 57-69, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847569

RESUMO

Neurons are specialized cells of the Central Nervous System whose function is intricately related to the neuritic network they develop to transmit information. Morphological evaluation of this network and other neuronal structures is required to establish relationships between neuronal morphology and function, and may allow monitoring physiological and pathophysiologic alterations. Fluorescence-based microphotographs are the most widely used in cellular bioimaging, but phase contrast (PhC) microphotographs are easier to obtain, more affordable, and do not require invasive, complicated and disruptive techniques. Despite the various freeware tools available for fluorescence-based images analysis, few exist that can tackle the more elusive and harder-to-analyze PhC images. To surpass this, an interactive semi-automated image processing workflow was developed to easily extract relevant information (e.g. total neuritic length, average cell body area) from both PhC and fluorescence neuronal images. This workflow, named 'NeuronRead', was developed in the form of an ImageJ macro. Its robustness and adaptability were tested and validated on rat cortical primary neurons under control and differentiation inhibitory conditions. Validation included a comparison to manual determinations and to a golden standard freeware tool for fluorescence image analysis. NeuronRead was subsequently applied to PhC images of neurons at distinct differentiation days and exposed or not to DAPT, a pharmacological inhibitor of the γ-secretase enzyme, which cleaves the well-known Alzheimer's amyloid precursor protein (APP) and the Notch receptor. Data obtained confirms a neuritogenic regulatory role for γ-secretase products and validates NeuronRead as a time- and cost-effective useful monitoring tool.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neurônios/citologia , Animais , Ratos
20.
Ageing Res Rev ; 40: 1-10, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757291

RESUMO

Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.


Assuntos
Doenças Cardiovasculares/metabolismo , Exercício Físico/fisiologia , Agregados Proteicos/fisiologia , Dobramento de Proteína , Doenças Cardiovasculares/prevenção & controle , Humanos , Estilo de Vida , Proteínas/metabolismo , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...