Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 213, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561788

RESUMO

BACKGROUND: The application of lower limb traction during hip arthroscopy and femur fractures osteosynthesis is commonplace in orthopaedic surgeries. Traditional methods utilize a perineal post on a traction table, leading to soft tissue damage and nerve neuropraxia. A postless technique, using high-friction pads, has been considered as a potential damage-free alternative. However, whether these pads sufficiently prevent patient displacement remains unknown. Thus, this study systematically assesses the efficacy of commercial high-friction pads (PinkPad and CarePad) in restraining subject displacement, for progressively increasing traction loads and different Trendelenburg angles. METHODS: Three healthy male subjects were recruited and tested in supine and Trendelenburg positions (5° and 10°), using a customized boot-pulley system. Ten load disks (5 kg) were dropped at 15s intervals, increasing gradually the traction load up to 50 kg. Pelvis displacement along the traction direction was measured with a motion capture system. The displacement at 50 kg of traction load was analyzed and compared across various pads and bed inclinations. Response to varying traction loads was statistically assessed with a quadratic function model. RESULTS: Pelvis displacement at 50 kg traction load was below 60 mm for all conditions. Comparing PinkPad and CarePad, no significant differences in displacement were observed. Finally, similar displacements were observed for the supine and Trendelenburg positions. CONCLUSIONS: Both PinkPad and CarePad exhibited nearly linear behavior under increasing traction loads, limiting displacement to 60 mm at most for 50 kg loads. Contrary to expectations, placing subjects in the Trendelenburg position did not increase adhesion.


Assuntos
Ortopedia , Humanos , Masculino , Tração/métodos , Articulação do Quadril/cirurgia , Pelve , Fixação Interna de Fraturas
2.
J Neurophysiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629162

RESUMO

The CNS may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of co-contraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. While it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing. In this study, participants co-activated the same pair of upper-limb muscles, i.e., the biceps brachii and the triceps brachii, to perform two functionally different tasks: limb stiffness modulation or endpoint force generation. Spike trains of MNs were identified through decomposition of High-Density EMGs collected from the two muscles. Cross-correlogram showed a higher synchronization between MNs recruited to modulate stiffness, while cross-muscle coherence analysis revealed peaks in the beta-band, which is commonly ascribed to a cortical origin. These peaks did not appear during the co-activation for force generation, thus suggesting separate cortical inputs for stiffness modulation. Moreover, a within-muscle coherence analysis identified two subsets of MNs that were selectively recruited to generate force or regulate stiffness. This study is the first to highlight different characteristics, and probable different neural origins, of the synaptic inputs driving a pair of muscles under different functional conditions. We suggest that stiffness modulation is driven by cortical inputs which project to a separate set of MNs, supporting the existence of a separate pathway underlying the control of stiffness.

3.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475049

RESUMO

The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.6 ± 2.1 years) received four weeks of EMGs_SG sessions 2×/week including repetitive, active alternating training of dorsi- and plantar flexors in a seated position. In addition, each child received usual PT treatment ≤ 2×/week, involving plantar flexor stretching and command strengthening on dorsi- and plantar flexors. Five-Step Assessment parameters, including preferred gait velocity (normalized by height); plantar flexor extensibility (XV1); angle of catch (XV3); maximal active ankle dorsiflexion (XA); and derived coefficients of shortening, spasticity, and weakness for both soleus and gastrosoleus complex (GSC) were compared pre and post treatment (t-tests). Correlations were explored between the various coefficients and gait velocities at baseline. After four weeks of EMGs_SG + PT, there was an increase in normalized gait velocity from 0.72 ± 0.13 to 0.77 ± 0.13 m/s (p = 0.025, d = 0.43), a decrease in coefficients of shortening (soleus, 0.10 ± 0.07 pre vs. 0.07 ± 0.08 post, p = 0.004, d = 0.57; GSC 0.16 ± 0.08 vs. 0.13 ± 0.08, p = 0.003, d = 0.58), spasticity (soleus 0.14 ± 0.06 vs. 0.12 ± 0.07, p = 0.02, d = 0.46), and weakness (soleus 0.14 ± 0.07 vs. 0.11 ± 0.07, p = 0.005, d = 0.55). At baseline, normalized gait velocity correlated with the coefficient of GSC shortening (R = -0.43, p = 0.02). Four weeks of EMGs_SG and PT were associated with improved gait velocity and decreased plantar flexor shortening. A randomized controlled trial comparing EMGs_SG and conventional PT is needed.


Assuntos
Paralisia Cerebral , Neurorretroalimentação , Criança , Humanos , Pré-Escolar , Estudos Prospectivos , Músculo Esquelético , Espasticidade Muscular , Modalidades de Fisioterapia , Marcha/fisiologia , Eletromiografia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38082591

RESUMO

High-Density Surface Electromyography (HD-sEMG) is a non-invasive technique for measuring the electrical activity of a muscle with multiple, closely spaced electrodes. Estimation of muscle force is one of the applications of HD-sEMG. Usually, validating different EMG-Force models entails simple movements limited to laboratory settings. The validity of these models in more ecological conditions, requesting force production over a wide frequency band, remains unknown. In this study, we, therefore, compare the results of force prediction using four different types of input force profiles that can be representative of daily life activities, and we investigate whether the crest factor of these different input signals affects force prediction. For predicting the force from sEMG signals, we used our real-time and convex methods. HD-sEMG signals were recorded with 144 channels from the biceps brachii, brachioradialis, and triceps (long, lateral, and medial head) muscles of 24 healthy subjects during random signal, random phase, Schroeder phase, and minimum crest factor (crestmin) signal. The correlation and coefficient of determination (R2) between measured and predicted forces were calculated for the different force feedback profiles. The crestmin signal showed significantly better results based on statistical tests (P-value < 0.05), with correlation and R2 equal to 0.92±0.03 and 0.86±0.05, respectively. The results demonstrate that the crest factor of input signals is a crucial parameter that can impact the performance of EMG-Force models and must be considered during training.Clinical Relevance- This study demonstrates that lower crest factor multisine force profiles result in improved fitness for force prediction and can be used as an alternative to random signals.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Braço/fisiologia , Cotovelo
5.
Front Sports Act Living ; 5: 1273152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022776

RESUMO

Introduction: Eccentric exercise has often been reported to result in muscle damage, limiting the muscle potential to produce force. However, understanding whether these adverse consequences extend to a broader, functional level is of apparently less concern. In this study, we address this issue by investigating the acute and delayed effects of supramaximal isotonic eccentric exercise on neuromuscular function and motor performance of knee extensors during tasks involving a range of strength profiles, proprioception, and balance. Methods: Fifteen healthy volunteers (23.2 ± 2.9 years old) performed a unilateral isotonic eccentric exercise of the knee extensors of their dominant lower limb (4 × 10 reps at 120% of one Repetition Maximum (1RM)). The maximum voluntary isometric contraction (MVC), rate of force development (RFD), force steadiness of the knee extensors, as well as knee joint position sense and mediolateral (MLI) and anteroposterior stability (API) of the dominant lower limb, were measured pre-, immediately, and 24 h after the eccentric exercise. The EMG amplitude of the vastus medialis (VM) and biceps femoris (BF) were concomitantly evaluated. Results: MVC decreased by 17.9% immediately after exercise (P < 0.001) and remained reduced by 13.6% 24 h following exercise (P < 0.001). Maximum RFD decreased by 20.4% immediately after exercise (P < 0.001) and remained reduced by 15.5% at 24 h (P < 0.001). During the MVC, EMG amplitude of the VM increased immediately after exercise while decreasing during the RFD task. Both values returned to baseline 24 h after exercise. Compared to baseline, force steadiness during submaximal isometric tasks reduced immediately after exercise, and it was accompanied by an increase in the EMG amplitude of the VM. MLI and knee joint position sense were impaired immediately after isotonic eccentric exercise (P < 0.05). While MLI returned to baseline values 24 h later, the absolute error in the knee repositioning task did not. Discussion: Impairments in force production tasks, particularly during fast contractions and in the knee joint position sense, persisted 24 h after maximal isotonic eccentric training, revealing that neuromuscular functional outputs were affected by muscle fatigue and muscle damage. Conversely, force fluctuation and stability during the balance tasks were only affected by muscle fatigue since fully recovered was observed 24 h following isotonic eccentric exercise.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37844006

RESUMO

The value of surface electromyograms (EMGs) lies in their potential to non-invasively probe the neuromuscular system. Whether muscle excitation may be accurately inferred from bipolar EMGs depends on how much the detected signal is both sensitive and specific to the excitation of the target muscle. While both are known to be a function of the inter-electrode distance (IED), specificity has been of long concern in the physiological literature. In contrast, sensitivity, at best, has been implicitly assumed. Here we provide evidence that the IED imposes a biophysical constraint on the sensitivity of surface EMG. From 20 healthy subjects, we tested the hypothesis that excessively reducing the IED limits EMGs' physiological content. We detected bipolar EMGs with IEDs varying from 5 mm to 50 mm from two skeletal muscles with distinct architectures, gastrocnemius and biceps brachii. Non-parametric statistics and Bayesian hierarchical modelling were used to evaluate the dependence of the onset of muscle excitation and signal-to-noise ratio (SNR) on the IED. Experimental results revealed that IED critically affects the sensitivity of bipolar EMGs for both muscles-indeliberately reducing the IED yields EMGs that are not representative of the whole muscle, hampering validity. Simulation results substantiate the generalization of experimental results to small and large electrodes. Based on current and previous findings, we discuss a potentially valid procedure for defining the most appropriate IED for a single bipolar, surface recording-i.e., the distance from the electrode to the target muscle boundary may heuristically serve as a lower bound when choosing an IED.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Eletromiografia/métodos , Teorema de Bayes , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletrodos
7.
J Neurophysiol ; 130(5): 1321-1333, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877159

RESUMO

Aging is associated with neuromuscular system changes that may have implications for the recruitment and firing behaviors of motor units (MUs). In previous studies, we observed that young adults recruit subpopulations of triceps surae MUs during tasks that involved leaning in five directions: common units that were active during different leaning directions and unique units that were active in only one leaning direction. Furthermore, the MU subpopulation firing behaviors [average firing rate (AFR), coefficient of variation (CoVISI), and intermittent firing] modulated with leaning direction. The purpose of this study was to examine whether older adults exhibited this regional recruitment of MUs and firing behaviors. Seventeen older adults (aged 74.8 ± 5.3 yr) stood on a force platform and maintained their center of pressure leaning in five directions. High-density surface electromyography recordings from the triceps surae were decomposed into single MU action potentials. A MU tracking analysis identified groups of MUs as being common or unique across the leaning directions. Although leaning in different directions did not affect the AFR and CoVISI of common units (P > 0.05), the unique units responded to the leaning directions by increasing AFR and CoVISI, albeit modestly (F = 18.51, P < 0.001). The unique units increased their intermittency with forward leaning (F = 9.22, P = 0.003). The mediolateral barycenter positions of MU activity in both subpopulations were found in similar locations for all leaning directions (P > 0.05). These neuromuscular changes may contribute to the reduced balance performance seen in older adults.NEW & NOTEWORTHY In this study, we observed differences in motor unit recruitment and firing behaviors of distinct subpopulations of motor units in the older adult triceps surae muscle from those observed in the young adult. Our results suggest that the older adult central nervous system may partially lose the ability to regionally recruit and differentially control motor units. This finding may be an underlying cause of balance difficulties in older adults during directionally challenging leaning tasks.


Assuntos
Contração Muscular , Músculo Esquelético , Adulto Jovem , Humanos , Idoso , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Perna (Membro) , Equilíbrio Postural , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica
8.
Front Physiol ; 14: 1098225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923291

RESUMO

Surface electromyography (sEMG) is a signal consisting of different motor unit action potential trains and records from the surface of the muscles. One of the applications of sEMG is the estimation of muscle force. We proposed a new real-time convex and interpretable model for solving the sEMG-force estimation. We validated it on the upper limb during isometric voluntary flexions-extensions at 30%, 50%, and 70% Maximum Voluntary Contraction in five subjects, and lower limbs during standing tasks in thirty-three volunteers, without a history of neuromuscular disorders. Moreover, the performance of the proposed method was statistically compared with that of the state-of-the-art (13 methods, including linear-in-the-parameter models, Artificial Neural Networks and Supported Vector Machines, and non-linear models). The envelope of the sEMG signals was estimated, and the representative envelope of each muscle was used in our analysis. The convex form of an exponential EMG-force model was derived, and each muscle's coefficient was estimated using the Least Square method. The goodness-of-fit indices, the residual signal analysis (bias and Bland-Altman plot), and the running time analysis were provided. For the entire model, 30% of the data was used for estimation, while the remaining 20% and 50% were used for validation and testing, respectively. The average R-square (%) of the proposed method was 96.77 ± 1.67 [94.38, 98.06] for the test sets of the upper limb and 91.08 ± 6.84 [62.22, 96.62] for the lower-limb dataset (MEAN ± SD [min, max]). The proposed method was not significantly different from the recorded force signal (p-value = 0.610); that was not the case for the other tested models. The proposed method significantly outperformed the other methods (adj. p-value < 0.05). The average running time of each 250 ms signal of the training and testing of the proposed method was 25.7 ± 4.0 [22.3, 40.8] and 11.0 ± 2.9 [4.7, 17.8] in microseconds for the entire dataset. The proposed convex model is thus a promising method for estimating the force from the joints of the upper and lower limbs, with applications in load sharing, robotics, rehabilitation, and prosthesis control for the upper and lower limbs.

9.
Scand J Med Sci Sports ; 33(7): 1104-1115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811255

RESUMO

Predictors and mitigators of strain injuries have been studied in sprint-related sports. While the rate of axial strain, and thus running speed, may determine the site of muscle failure, muscle excitation seemingly offers protection against failure. It seems therefore plausible to ask whether running at different speeds changes the distribution of excitation within muscles. Technical limitations undermine, however, the possibility of addressing this issue in high-speed, ecological conditions. Here, we circumvent these limitations with a miniaturized, wireless, multi-channel amplifier, suited for collecting spatio-temporal data and high-density surface electromyograms (EMGs) during overground running. We segmented running cycles while 8 experienced sprinters ran at speeds close to (70% and 85%) and at (100%) their maximum, over an 80 m running track. Then, we assessed the effect of running speed on the distribution of excitation within biceps femoris (BF) and gastrocnemius medialis (GM). Statistical parametric mapping (SPM) revealed a significant effect of running speed on the amplitude of EMGs for both muscles, during late swing and early stance. Paired SPM revealed greater EMG amplitude when comparing 100% with 70% running speed for BF and GM. Regional differences in excitation were observed only for BF, however. As running speed increased from 70% to 100% of the maximum, a greater degree of excitation was observed at more proximal BF regions (from 2% to 10% of the thigh length) during late swing. We discuss how these results, in the context of the literature, support the protective role of pre-excitation against muscle failure, suggesting the site of BF muscle failure may depend on running speed.


Assuntos
Músculos Isquiossurais , Corrida , Humanos , Músculos Isquiossurais/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Corrida/fisiologia
10.
J Neurophysiol ; 129(1): 272-284, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475977

RESUMO

It has been shown that when humans lean in various directions, the central nervous system (CNS) recruits different motoneuron pools for task completion; common units that are active during different leaning directions, and unique units that are active in only one leaning direction. We used high-density surface electromyography (HD-sEMG) to examine if motor unit (MU) firing behavior was dependent on leaning direction, muscle (medial and lateral gastrocnemius; soleus), limits of stability, or whether a MU is considered common or unique. Fourteen healthy participants stood on a force platform and maintained their center of pressure in five different leaning directions. HD-sEMG recordings were decomposed into MU action potentials and the average firing rate (AFR), coefficient of variation (CoVISI), and firing intermittency were calculated on the MU spike trains. During the 30°-90° leaning directions both unique units and common units had higher firing rates (F = 31.31, P < 0.0001). However, the unique units achieved higher firing rates compared with the common units (mean estimate difference = 3.48 Hz, P < 0.0001). The CoVISI increased across directions for the unique units but not for the common units (F = 23.65, P < 0.0001). Finally, intermittent activation of MUs was dependent on the leaning direction (F = 11.15, P < 0.0001), with less intermittent activity occurring during diagonal and forward-leaning directions. These results provide evidence that the CNS can preferentially control separate motoneuron pools within the ankle plantarflexors during voluntary leaning tasks for the maintenance of standing balance.NEW & NOTEWORTHY In this study, we demonstrate that the different subpopulations of motor units within the three muscles comprising the ankle plantarflexors behave differently during multidirectional leaning. Our results suggest that the central nervous system has the capability to control distinct subpopulations of motor units to meet the force requirements necessary for leaning. This may allow for a precise, efficient, and flexible control strategy for the maintenance of standing balance.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Perna (Membro) , Eletromiografia
11.
J Electromyogr Kinesiol ; 67: 102721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427373

RESUMO

Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to - or is compensated by - other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors' activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors' activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles' activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.


Assuntos
Músculo Esquelético , Postura , Humanos , Músculo Esquelético/fisiologia , Postura/fisiologia , Equilíbrio Postural/fisiologia , Tornozelo/fisiologia , Eletromiografia , Extremidade Inferior/fisiologia
12.
J Electromyogr Kinesiol ; 67: 102713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215780

RESUMO

Conflictual results between the onset of vastus medialis (VM) and vastus lateralis (VL) excitation may arise from methodological aspects related to the detection of surface electromyograms. In this study we used an array of surface electrodes to assess the effect of detection site, relative to the muscle innervation zone, on the difference between VM and VL excitation onsets. Ten healthy males performed moderate isometric knee extension at 40 % of their maximal voluntary isometric contraction. After the actual VM-VL onset was defined (estimated when action potentials were generated at the neuromuscular junctions of both muscles), we calculated the largest bias that the detection site may introduce in the VM-VL onset estimation. We also assessed whether the location often considered for positioning bipolar electrodes on each muscle leads to VM-VL onset estimations comparable to the actual VM-VL onset. Our main results revealed that a maximum absolute bias of 20.48 ms may be introduced in VM-VL onset estimations due to the electrodes' detection site. In addition, mean differences of âˆ¼ 12 ms in VM-VL onset estimations were attributable to largest possible discrepancies in the paired position of channels with respect to the innervation zone for VL and VM. When considering the classical location for positioning the bipolar electrodes over these muscles, differences error was subtle (∼3.4 ms) when compared with the actual VM-VL onset. Nonetheless, when accounting for the effect of relative differences in electrode position between muscles is not possible, our results suggest that a systematic absolute error of âˆ¼ 12 ms should be considered in future studies regarding VM-VL onset estimations, suggesting that onset differences lower than that might not be clinically relevant.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Masculino , Humanos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Joelho/fisiologia
13.
Med Eng Phys ; 106: 103833, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926952

RESUMO

Different mechanisms of force transmission have been developed for the movement of wheelchairs, from the standard pushrim propulsion to the handbike. Contributing to this repertoire, we recently developed a system of propulsion based on a pulley-cable mechanism, the Handwheelchair.Q. In contrast to other propulsion systems, the Handwheelchair.Q requires users to extend the shoulders and flex the elbows to move the wheelchair forward, mimicking the rowing gesture. Whether however our proposed, propulsion system imposes a similar degree of shoulder muscles excitation with respect to the conventional, pushrim system is yet to be addressed. In this study we therefore assess whether the Handwheelchair.Q demands a similar degree and timing of muscle excitation with respect to the pushrim wheelchair, for a given travelled distance. We address this issue by sampling the angular speed of the two wheels and the surface EMGs from ten, shoulder muscles, while seven subjects use the two propulsion systems at constantly low and high speeds, one at a time. As expected, results revealed opposite muscle groups were excited when comparing the two mechanisms for wheelchair propulsion. ANOVA statistics indicated the amplitude of EMGs was greater for shoulder flexors and elbow extensors during the drive phase of pushrim propulsion, with the opposite being observed for the Handwheelchair.Q. Interestingly, from the angular speed we observed a significantly greater average displacement was achieved with the Handwheelchair.Q. Our results support therefore the notion that, with respect to pushrim propulsion, subjects were able to move faster without overloading the shoulder muscle with the Handwheelchair.Q.


Assuntos
Cadeiras de Rodas , Fenômenos Biomecânicos , Eletromiografia , Humanos , Músculo Esquelético , Ombro
14.
Sci Rep ; 12(1): 8855, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614312

RESUMO

Electromyography and ultrasonography provide complementary information about electrophysiological and physical (i.e. anatomical and mechanical) muscle properties. In this study, we propose a method to assess the electrical and physical properties of single motor units (MUs) by combining High-Density surface Electromyography (HDsEMG) and ultrafast ultrasonography (US). Individual MU firings extracted from HDsEMG were used to identify the corresponding region of muscle tissue displacement in US videos. The time evolution of the tissue velocity in the identified region was regarded as the MU tissue displacement velocity. The method was tested in simulated conditions and applied to experimental signals to study the local association between the amplitude distribution of single MU action potentials and the identified displacement area. We were able to identify the location of simulated MUs in the muscle cross-section within a 2 mm error and to reconstruct the simulated MU displacement velocity (cc > 0.85). Multiple regression analysis of 180 experimental MUs detected during isometric contractions of the biceps brachii revealed a significant association between the identified location of MU displacement areas and the centroid of the EMG amplitude distribution. The proposed approach has the potential to enable non-invasive assessment of the electrical, anatomical, and mechanical properties of single MUs in voluntary contractions.


Assuntos
Contração Isométrica , Neurônios Motores , Potenciais de Ação/fisiologia , Eletromiografia/métodos , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Ultrassonografia
15.
PLoS One ; 17(3): e0265575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316295

RESUMO

BACKGROUND AND OBJECTIVES: Professional pianists tend to develop playing-related musculoskeletal disorders mostly in the forearm. These injuries are often due to overuse, suggesting the existence of a common forearm region where muscles are often excited during piano playing across subjects. Here we use a grid of electrodes to test this hypothesis, assessing where EMGs with greatest amplitude are more likely to be detected when expert pianists perform different excerpts. METHODS: Tasks were separated into two groups: classical excerpts and octaves, performed by eight, healthy, professional pianists. Monopolar electromyograms (EMGs) were sampled with a grid of 96 electrodes, covering the forearm region where hand and wrist muscles reside. Regions providing consistently high EMG amplitude across subjects were assessed with a non-parametric permutation test, designed for the statistical analysis of neuroimaging experiments. Spatial consistency across trials was assessed with the Binomial test. RESULTS: Spatial consistency of muscle excitation was found across subjects but not across tasks, confining at most 20% of the electrodes in the grid. These local groups of electrodes providing high EMG amplitude were found at the ventral forearm region during classical excerpts and at the dorsal region during octaves, when performed both at preferred and at high, playing speeds. DISCUSSION: Our results revealed that professional pianists consistently load a specific forearm region, depending on whether performing octaves or classical excerpts. This spatial consistency may help furthering our understanding on the incidence of playing-related muscular disorders and provide an anatomical reference for the study of active muscle loading in piano players using surface EMG.


Assuntos
Antebraço , Músculo Esquelético , Eletromiografia/métodos , Antebraço/fisiologia , Mãos , Humanos , Músculo Esquelético/fisiologia , Punho
16.
Eur J Appl Physiol ; 122(6): 1367-1381, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35226169

RESUMO

It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.


Assuntos
Treino Aeróbico , Aclimatação , Potenciais de Ação , Animais , Humanos , Neurônios Motores/fisiologia , Coluna Vertebral
17.
Sports Med ; 52(2): 193-199, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35006527

RESUMO

Surface electromyography amplitudes are commonly measured in acute sports and exercise science studies to make inferences about muscular strength, performance, and hypertrophic adaptations that may result from different exercises or exercise-related variables. Here, we discuss the presumptive logic and assumptions underlying these inferences, focusing on hypertrophic adaptations for simplicity's sake. We present counter-evidence for each of its premises and discuss evidence both for and against the logical conclusion. Given the limited evidence validating the amplitude of surface electromyograms as a predictor of longitudinal hypertrophic adaptations, coupled with its weak mechanistic foundation, we suggest that acute comparative studies that wish to assess stimulus potency be met with scrutiny.


Assuntos
Força Muscular , Músculo Esquelético , Adaptação Fisiológica , Eletromiografia , Humanos , Hipertrofia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
18.
Scand J Med Sci Sports ; 32(2): 381-390, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34644424

RESUMO

Non-physiological sources may lead to equivocal interpretation on the degree of muscle excitation from electromyograms (EMGs) amplitude. This presumably explains the contradictory findings regarding the effect of the bench press inclination on the pectoralis major (PM) activation pattern. To contend with these issues, herein we used high-density surface EMG to investigate whether different PM regions are excited during the flat and 45° inclined bench press exercises. Single-differential EMGs were collected from 15 regions along the PM cranio-caudal axis, while 8 volunteers performed a set of the flat and 45° inclined bench press at 50% and 70% of 1 repetition maximum. The coefficient of variation, the range of motion, and the cycle duration were calculated from the barbell vertical position to assess the within-subject consistency across cycles. The number of channels detecting the largest EMGs amplitude (active channels), their interquartile range, and their barycentre coordinate were assessed to characterize the EMG amplitude distribution within PM. No significant differences in the range of motion (p > 0.11), cycle duration (p > 0.28), number of active channels (p > 0.05), and interquartile range of active channels (p > 0.39) were observed between the two bench press inclinations. Conversely, the barycentre shifted toward the PM clavicular region (p < 0.001) when the bench press changed from flat to 45°. Our results revealed that greatest EMG amplitudes were concentrated at the PM sternocostal and clavicular heads when exercising in the flat and 45° inclined bench press, respectively. Performing the bench press exercise, with different postures, seem to demand the excitation of different PM regions.


Assuntos
Músculos Peitorais , Treinamento Resistido , Eletromiografia , Exercício Físico , Humanos , Força Muscular , Músculo Esquelético , Levantamento de Peso
19.
Exp Brain Res ; 239(8): 2569-2581, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191118

RESUMO

The purpose of this study is to investigate whether regional modulation of the ankle plantarflexors during standing was related to the recruitment of motor units associated with force direction. Fourteen participants performed a multi-directional leaning task in standing. Participants stood on a force platform and maintained their center of pressure in five different target directions. Motor unit firings were extracted by decomposition of high-density surface electromyograms recorded from the ankle plantarflexor muscles. The motor unit barycentre, defined as the weighted mean of the maximal average rectified values across columns and rows, was used to evaluate the medio-lateral and proximo-distal changes in the surface representation of single motor units across different leaning target directions. Using a motor unit tracking analysis, groups of motor units were identified as being common or unique across the target directions. The leaning directions had an effect on the spatial representations of motor units in the medial gastrocnemius and soleus (p < 0.05), but not in the lateral gastrocnemius (p > 0.05). Motor unit action potentials were represented in the medial and proximal aspects of the muscles during forward vs. lateral leans. Further analysis determined that the common motor units were found in similar spatial locations across the target directions, whereas newly recruited unique motor units were found in different spatial locations according to target direction (p < 0.05). The central nervous system may possess the ability to activate different groups of motor units according to task demands to meet the force-direction requirements of the leaning task.


Assuntos
Tornozelo , Postura , Articulação do Tornozelo , Eletromiografia , Humanos , Músculo Esquelético , Recrutamento Neurofisiológico , Posição Ortostática
20.
Artigo em Inglês | MEDLINE | ID: mdl-34097613

RESUMO

Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks.


Assuntos
Músculo Esquelético , Têxteis , Eletrodos , Eletromiografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...