Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(2): e0007146, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802247

RESUMO

Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.


Assuntos
Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Vacinas Protozoárias/imunologia , Receptor Toll-Like 9/imunologia , Administração Intranasal , Animais , Antígenos de Protozoários/imunologia , Ilhas de CpG , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Armadilhas Extracelulares , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/parasitologia , Óxido Nítrico/biossíntese , Carga Parasitária , Receptor Toll-Like 9/genética , Vacinação
2.
Mediators Inflamm ; 2015: 495430, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26063973

RESUMO

Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp-) deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.


Assuntos
Dexametasona/farmacologia , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Linfócitos/imunologia , Proteínas Citotóxicas Formadoras de Poros/deficiência , Animais , Dexametasona/administração & dosagem , Eosinófilos/citologia , Eosinófilos/imunologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Granulócitos/citologia , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...