Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732135

RESUMO

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Assuntos
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurônico , Hidrogéis , Oligopeptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inibidores , Hidrogéis/química , Linhagem Celular Tumoral , Ácido Hialurônico/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo
2.
Cancers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275875

RESUMO

The long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is associated with oncogenic features in bladder cancer and is predictive of poor clinical outcomes in patients diagnosed with this disease. In this study, we evaluated the impact of the HOTAIR single nucleotide polymorphisms rs920778 and rs12826786 on bladder cancer risk and survival. This case-control study included 106 bladder cancer patients and 199 cancer-free controls. Polymorphisms were evaluated through PCR-restriction fragment length polymorphism. The odds ratio and 95% confidence intervals were tested using univariable and multivariable logistic regressions. The effects on patient survival were evaluated using the log-rank test and Cox regression models. Our data showed that the HOTAIR rs920778 and rs12826786 genetic variants are not associated with the risk of developing bladder cancer. Nevertheless, survival analyses suggested that the HOTAIR rs920778 TT genotype and rs12826786 CC genotype are associated with increased survival in male bladder cancer patients and in patients, both male and female, who have primary tumors with a pathological stage of pT2. Together, these results suggest that, despite not being associated with bladder cancer risk, HOTAIR rs920778 and rs12826786 polymorphisms might represent new prognostic factors in this type of cancer. This is particularly important as these polymorphisms might be easily evaluated in bladder cancer patients in a minimally invasive manner to better predict their clinical outcomes.

3.
Colloids Surf B Biointerfaces ; 225: 113245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905835

RESUMO

The understanding of the interaction between nanoparticles (NPs) and cells is crucial to design nanocarriers with high therapeutic relevance. In this study, we exploited a microfluidics device to synthesize homogeneous suspensions of NPs with ≈ 30, 50, and 70 nm of size. Afterward, we investigated their level and mechanism of internalization when exposed to different types of cells (endothelial cells, macrophages, and fibroblasts). Our results show that all NPs were cytocompatible and internalized by the different cell types. However, NPs uptake was size-dependent, being the maximum uptake efficiency observed for the 30 nm NPs. Moreover, we demonstrate that size can lead to distinct interactions with different cells. For instance, 30 nm NPs were internalized with an increasing trend over time by endothelial cells, while a steady and a decreasing trend were observed when incubated with LPS-stimulated macrophages and fibroblasts, respectively. Finally, the use of different chemical inhibitors (chlorpromazine, cytochalasin-D, and nystatin), and low temperature (4 °C) indicated that phagocytosis/micropinocytosis are the main internalization mechanism for all NPs sizes. However, different endocytic pathways were initiated in the presence of particular NP sizes. In endothelial cells, for example, caveolin-mediated endocytosis occurs primarily in the presence of 50 nm NPs, whereas clathrin-mediated endocytosis substantially promotes the internalization of 70 nm NPs. This evidence demonstrates the importance of size in the NPs design for mediating interaction with specific cell types.


Assuntos
Células Endoteliais , Nanopartículas , Nanopartículas/metabolismo , Polímeros , Linhagem Celular , Células Cultivadas , Endocitose , Tamanho da Partícula
4.
Front Oncol ; 12: 856210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402232

RESUMO

The existence of a clear association between stress and cancer is still a matter of debate. Recent studies suggest that chronic stress is associated with some cancer types and may influence tumor initiation and patient prognosis, but its role in brain tumors is not known. Glioblastoma (GBM) is a highly malignant primary brain cancer, for which effective treatments do not exist. Understanding how chronic stress, or its effector hormones glucocorticoids (GCs), may modulate GBM aggressiveness is of great importance. To address this, we used both syngeneic and xenograft in vivo orthotopic mouse models of GBM, in immunocompetent C57BL/6J or immunodeficient NSG mice, respectively, to evaluate how different paradigms of stress exposure could influence GBM aggressiveness and animals' overall survival (OS). Our results demonstrated that a previous exposure to exogenous corticosterone administration, chronic restraint stress, or chronic unpredictable stress do not impact the OS of these mice models of GBM. Concordantly, ex vivo analyses of various GBM-relevant genes showed similar intra-tumor expression levels across all experimental groups. These findings suggest that corticosterone and chronic stress do not significantly affect GBM aggressiveness in murine models.

5.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205043

RESUMO

Glioblastoma (GBM) is the most common and most deadly primary malignant brain tumor. Current therapies are not effective, the average survival of GBM patients after diagnosis being limited to few months. Therefore, the discovery of new treatments for this highly aggressive brain cancer is urgently needed. Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, three chalcone derivatives were tested regarding their inhibitory activity and selectivity towards GBM cell lines (human and mouse) and a non-cancerous mouse brain cell line. The chalcone 1 showed the most potent and selective cytotoxic effects in the GBM cell lines, being further investigated regarding its ability to reduce critical hallmark features of GBM and to induce apoptosis and cell cycle arrest. This derivative showed to successfully reduce the invasion and proliferation capacity of tumor cells, both key targets for cancer treatment. Moreover, to overcome potential systemic side effects and its poor water solubility, this compound was encapsulated into liposomes. Therapeutic concentrations were incorporated retaining the potent in vitro growth inhibitory effect of the selected compound. In conclusion, our results demonstrated that this new formulation can be a promising starting point for the discovery of new and more effective drug treatments for GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Glioblastoma/metabolismo , Animais , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Lipossomos , Camundongos , Estrutura Molecular , Invasividade Neoplásica
6.
Cancers (Basel) ; 13(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34298681

RESUMO

Background: Glioblastomas (GBMs) present remarkable metabolism reprograming, in which many cells display the "Warburg effect", with the production of high levels of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). We described previously that MCT1 is up-regulated in human GBM samples, and MCT1 inhibition decreases glioma cell viability and aggressiveness. In the present study, we aimed to unveil the role of MCT1 in GBM prognosis and to explore it as a target for GBM therapy in vivo. Methods: MCT1 activity and protein expression were inhibited by AR-C155858 and CHC compounds or stable knockdown with shRNA, respectively, to assess in vitro and in vivo the effects of MCT1 inhibition and on response of GBM to temozolomide. Survival analyses on GBM patient cohorts were performed using Cox regression and Log-rank tests. Results: High levels of MCT1 expression were revealed to be a predictor of poor prognosis in multiple cohorts of GBM patients. Functionally, in U251 GBM cells, MCT1 stable knockdown decreased glucose consumption and lactate efflux, compromising the response to the MCT1 inhibitors CHC and AR-C155858. MCT1 knockdown significantly increased the survival of orthotopic GBM intracranial mice models when compared to their control counterparts. Furthermore, MCT1 downregulation increased the sensitivity to temozolomide in vitro and in vivo, resulting in significantly longer mice survival. Conclusions: This work provides first evidence for MCT1 as a new prognostic biomarker of GBM survival and further supports MCT1 targeting, alone or in combination with classical chemotherapy, for the treatment of GBM.

7.
ACS Biomater Sci Eng ; 7(7): 3423-3433, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34097827

RESUMO

The increase of both arterial occlusive diseases and coronary heart diseases leads to a higher demand for small-diameter vascular grafts (<6 mm). The gold standard for small-diameter vessel replacement is the use of autologous veins. Nevertheless, up to 30% of these patients need to use vascular grafts. Although synthetic polymers have been successfully used for the replacement of large-diameter vascular grafts (>6 mm), they are associated with thrombosis, intimal hyperplasia, calcification, and chronic inflammation when used as small-diameter vascular grafts. Therefore, natural materials have been studied for this application. In this study, a decellularized human chorion membrane (dHCM) vascular graft with a 3-4 mm diameter was created. Herein, the biocompatibility of dHCM with endothelial cells was demonstrated in vitro and ex ovo. Blood biocompatibility of dHCM was also shown by studying plasma protein adsorption, platelet adhesion and activation, and its hemolytic potential. Furthermore, dHCM antibacterial properties against Staphylococcus aureus were also studied. In summary, the dHCM reticular layer side presented all the needed characteristics to be used in the inner side of a vascular graft. Additionally, the mechanical properties of the dHCM tubular construct were studied, being similar to the ones of the saphenous vein, the gold standard for autologous small-diameter vessel replacement.


Assuntos
Bioprótese , Enxerto Vascular , Bioprótese/efeitos adversos , Prótese Vascular/efeitos adversos , Córion , Células Endoteliais , Humanos
8.
Cancers (Basel) ; 13(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669350

RESUMO

The identification of cancer stem cells (CSCs), which are implicated in tumor initiation, progression, therapy resistance, and relapse, is of great biological and clinical relevance. In glioblastoma (GBM), this is still a challenge, as no single marker is able to universally identify populations of GBM cancer stem cells (GSCs). Indeed, there is still controversy on whether biomarker-expressing cells fulfill the functional criteria of bona fide GSCs, despite being widely used. Here, we describe a novel subpopulation of autofluorescent (Fluo+) cells in GBM that bear all the functional characteristics of GSCs, including higher capacity to grow as neurospheres, long-term self-renewal ability, increased expression of stem cell markers, and enhanced in vivo tumorigenicity. Mechanistically, the autofluorescent phenotype is largely due to the intracellular accumulation of riboflavin, mediated by the ABC transporter ABCG2. In summary, our work identifies an intrinsic cellular autofluorescent phenotype enriched in GBM cells with functional stem cells features that can be used as a novel, simple and reliable biomarker to target these highly malignant tumors, with implications for GBM biological and clinical research.

9.
Biomolecules ; 10(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825287

RESUMO

Although some placenta-derived products are already used for tissue regeneration, the human chorion membrane (HCM) alone has been poorly explored. In fact, just one study uses decellularized HCM (dHCM) with native tissue architecture (i.e., without extracellular matrix (ECM) suspension creation) as a substrate for cell differentiation. The aim of this work is to fully characterize the dHCM for the presence and distribution of cell nuclei, DNA and ECM components. Moreover, mechanical properties, in vitro biological performance and in vivo biocompatibility were also studied. Our results demonstrated that the HCM was successfully decellularized and the main ECM proteins were preserved. The dHCM has two different surfaces, the reticular layer side and the trophoblast side; and is biocompatible both in vitro and in vivo. Importantly, the in vivo experiments demonstrated that on day 28 the dHCM starts to be integrated by the host tissue. Altogether, these results support the hypothesis that dHCM may be used as a biomaterial for different tissue regeneration strategies, particularly when a membrane is needed to separate tissues, organs or other biologic compartments.


Assuntos
Materiais Biocompatíveis/química , Córion/química , Engenharia Tecidual , Alicerces Teciduais/química , Humanos , Cicatrização
10.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722427

RESUMO

The discovery of glioblastoma stem cells (GSCs) in the 2000s revolutionized the cancer research field, raising new questions regarding the putative cell(s) of origin of this tumor type, and partly explaining the highly heterogeneous nature of glioblastoma (GBM). Increasing evidence has suggested that GSCs play critical roles in tumor initiation, progression, and resistance to conventional therapies. The remarkable oncogenic features of GSCs have generated significant interest in better defining and characterizing these cells and determining novel pathways driving GBM that could constitute attractive key therapeutic targets. While exciting breakthroughs have been achieved in the field, the characterization of GSCs is a challenge and the cell of origin of GBM remains controversial. For example, the use of several cell-surface molecular markers to identify and isolate GSCs has been a challenge. It is now widely accepted that none of these markers is, per se, sufficiently robust to distinguish GSCs from normal stem cells. Finding new strategies that are able to more efficiently and specifically target these niches could also prove invaluable against this devastating and therapy-insensitive tumor. In this review paper, we summarize the most relevant findings and discuss emerging concepts and open questions in the field of GSCs, some of which are, to some extent, pertinent to other cancer stem cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas , Carcinogênese , Proliferação de Células , Glioblastoma , Células-Tronco Neoplásicas , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Carcinogênese/metabolismo , Carcinogênese/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
11.
Methods Cell Biol ; 157: 23-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334717

RESUMO

The human placenta is considered a biological waste, thus it is a great source of extracellular matrix (ECM) proteins. The human chorion membrane (HCM) is a membrane that composes the human placenta and is constituted by collagens type I, II, IV, V and VI, fibronectin and laminin. To the best of our knowledge, the potential of HCM alone is largely unexplored as a substrate to be used in tissue engineering and regenerative medicine. In this work, we describe, for the first time, the process and method to decellularize the chorion membrane alone. To verify the success of the decellularization protocol, the presence and distribution of cell nuclei and double-stranded DNA were quantified and analyzed by DAPI staining, PicoGreen and electrophoresis. After the decellularization protocol an ECM compact and handleably membrane is obtained, the decellularized human chorion membrane (dHCM).


Assuntos
Córion/citologia , Matriz Extracelular , Engenharia Tecidual/métodos , Alicerces Teciduais , Núcleo Celular/química , DNA/análise , Proteínas da Matriz Extracelular/análise , Feminino , Humanos , Placenta/citologia , Gravidez , Medicina Regenerativa/métodos
12.
Theranostics ; 8(17): 4805-4823, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279739

RESUMO

Glioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.


Assuntos
Biomarcadores/análise , Glioblastoma/diagnóstico , Glioblastoma/patologia , Proteínas Wnt/análise , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Prognóstico , Proteínas Proto-Oncogênicas/análise , Transdução de Sinais , Análise de Sobrevida , Temozolomida/farmacologia , Proteínas Wnt/genética
13.
J Transl Med ; 15(1): 200, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969635

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. METHODS: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. RESULTS: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. CONCLUSIONS: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioblastoma/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Temozolomida
14.
Cell Commun Signal ; 15(1): 37, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969644

RESUMO

BACKGROUND: Glioblastoma (GBM), the most malignant primary brain tumor, leads to poor and unpredictable clinical outcomes. Recent studies showed the tumor microenvironment has a critical role in regulating tumor growth by establishing a complex network of interactions with tumor cells. In this context, we investigated how GBM cells modulate resident glial cells, particularly their paracrine activity, and how this modulation can influence back on the malignant phenotype of GBM cells. METHODS: Conditioned media (CM) of primary mouse glial cultures unexposed (unprimed) or exposed (primed) to the secretome of GL261 GBM cells were analyzed by proteomic analysis. Additionally, these CM were used in GBM cells to evaluate their impact in glioma cell viability, migration capacity and activation of tumor-related intracellular pathways. RESULTS: The proteomic analysis revealed that the pre-exposure of glial cells to CM from GBM cells led to the upregulation of several proteins related to inflammatory response, cell adhesion and extracellular structure organization within the secretome of primed glial cells. At the functional levels, CM derived from unprimed glial cells favored an increase in GBM cell migration capacity, while CM from primed glial cells promoted cells viability. These effects on GBM cells were accompanied by activation of particular intracellular cancer-related pathways, mainly the MAPK/ERK pathway, which is a known regulator of cell proliferation. CONCLUSIONS: Together, our results suggest that glial cells can impact on the pathophysiology of GBM tumors, and that the secretome of GBM cells is able to modulate the secretome of neighboring glial cells, in a way that regulates the "go-or-grow" phenotypic switch of GBM cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , Neuroglia/metabolismo , Fenótipo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Comunicação Parácrina
15.
Tumour Biol ; 36(8): 6525-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813152

RESUMO

Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.


Assuntos
Biomarcadores Tumorais/genética , Glioblastoma/genética , Glioma/genética , Fator de Crescimento Transformador beta1/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Glioblastoma/patologia , Glioma/epidemiologia , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...