Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Res ; 10(1): 98, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804276

RESUMO

PURPOSE: TEM-1 (tumor endothelial marker-1) is a single-pass transmembrane cell surface glycoprotein expressed at high levels by tumor vasculature and malignant cells. We aimed to perform a preclinical investigation of a novel anti-TEM-1 scFv-Fc fusion antibody, 1C1m-Fc, which was radiolabeled with 177Lu for use in soft tissue sarcomas models. METHODS: 1C1m-Fc was first conjugated to p-SCN-Bn-DOTA using different excess molar ratios and labeled with 177Lu. To determine radiolabeled antibody immunoreactivity, Lindmo assays were performed. The in vivo behavior of [177Lu]Lu-1C1m-Fc was characterized in mice bearing TEM-1 positive (SK-N-AS) and negative (HT-1080) tumors by biodistribution and single-photon emission SPECT/CT imaging studies. Estimated organ absorbed doses were obtained based on biodistribution results. RESULTS: The DOTA conjugation and the labeling with 177Lu were successful with a radiochemical purity of up to 95%. Immunoreactivity after radiolabeling was 86% ± 4%. Biodistribution showed a specific uptake in TEM-1 positive tumor versus liver as critical non-specific healthy organ, and this specificity is correlated to the number of chelates per antibody. A 1.9-fold higher signal at 72 h was observed in SPECT/CT imaging in TEM-1 positive tumors versus control tumors. CONCLUSION: TEM-1 is a promising target that could allow a theranostic approach to soft-tissue sarcoma, and 1C1m-Fc appears to be a suitable targeting candidate. In this study, we observed the influence of the ratio DOTA/antibody on the biodistribution. The next step will be to investigate the best conjugation to achieve an optimal tumor-to-organ radioactivity ratio and to perform therapy in murine xenograft models as a prelude to future translation in patients.

2.
Nuklearmedizin ; 51(5): 163-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22576273

RESUMO

AIM: 5-fluoro-2'-deoxyuridine (FdUrd) depletes the endogenous 5'-deoxythymidine triphosphate (dTTP) pool. We hypothesized whether uptake of exogenous dThd analogues could be favoured through a feedback enhanced salvage pathway and studied the FdUrd effect on cellular uptake of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) and 5-125I-iodo-2'-deoxyuridine (125I-IdUrd) in different cancer cell lines in parallel. METHODS: Cell uptake of 18F-FLT and 125I-IdUrd was studied in 2 human breast, 2 colon cancer and 2 glioblastoma lines. Cells were incubated with/without 1 µmol/l FdUrd for 1 h and, after washing, with 1.2 MBq 18F-FLT or 125I-IdUrd for 0.3 to 2 h. Cell bound 18F-FLT and 125I-IdUrd was counted and expressed in % incubated activity (%IA). Kinetics of 18F-FLT cell uptake and release were studied with/without FdUrd modulation. 2'-3H-methyl-fluorothymidine (2'-3H-FLT) uptake with/without FdUrd pretreatment was tested on U87 spheroids and monolayer cells. RESULTS: Basal uptake at 2 h of 18F-FLT and 125I-IdUrd was in the range of 0.8-1.0 and 0.4-0.6 Bq/cell, respectively. FdUrd pretreatment enhanced 18F-FLT and 125I-IdUrd uptake 1.2-2.1 and 1.7-4.4 fold, respectively, while co-incubation with excess thymidine abrogated all 18F-FLT uptake. FdUrd enhanced 18F-FLT cellular inflow in 2 breast cancer lines by factors of 1.8 and 1.6, respectively, while outflow persisted at a slightly lower rate. 2'-3H-FLT basal uptake was very low while uptake increase after FdUrd was similar in U87 monolayer cells and spheroids. CONCLUSIONS: Basal uptake of 18F-FLT was frequently higher than that of 125I-IdUrd but FdUrd induced uptake enhancement was stronger for 125I-IdUrd in five of six cell lines. 18F-FLT outflow from cells might be an explanation for the observed difference with 125I-IdUrd.


Assuntos
Linhagem Celular Tumoral/metabolismo , Didesoxinucleosídeos/farmacocinética , Floxuridina/administração & dosagem , Idoxuridina/farmacocinética , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Linhagem Celular Tumoral/diagnóstico por imagem , Humanos , Taxa de Depuração Metabólica/efeitos dos fármacos , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética
3.
Nuklearmedizin ; 50(6): 225-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21989840

RESUMO

AIM: To visualize neovasculature and/or tumour integrin αvß3 we selected the binding moiety Arg-Gly-Asp-D-Tyr-Lys (RGDyK) coupled to NODAGA for labeling with 68Ga. METHODS: NODAGA-RGDyK (ABX) was labeled with the 68Ga eluate from the 68Ge generator IGG100 using the processor unit PharmTracer. Biodistribution was measured in female Hsd mice sacrificed 10, 30, 60 and 90 min after i.v. injection of 68Ga-NODAGA-RGDyK for OLINDA dosimetry extrapolated to humans. Tumour targeting was studied in SCID mice bearing A431 and other tumour transplants using microPET and biodistribution measurements. RESULTS: Effective half-life of 68Ga-NODAGA-RGDyK was ~25 min for total body and most organs except liver and spleen that showed stable activity retention. With a bladder voiding interval of 0.5 h the calculated effective dose (ED) was 0.012 and 0.016 mSv/MBq for males and females, respectively. Rapid uptake within 10 min was observed in A431 tumours with dynamic PET followed by a slow release. Biodistribution measurements showed a 68Ga-NODAGA-RGDyK uptake in A431 tumours of 3.4±0.4 and 2.7±0.3%ID/g at 1 and 2 h, respectively. Similar uptakes were observed in a mouse and human breast and ovarian cancer xenografts. Co-injection of excess (5 mg/kg) unlabeled NODAGA-RGDyK with the radiotracer reduced tumour uptake at one hour to 0.23±0.01%ID/g, but similarly decreased uptake in normal organs as well. When unlabeled peptide was injected 15 min after 68Ga-NODAGA-RGDyK, uptake diminished particularly in tumour and adrenals, suggestive of a different binding mode compared with other normal tissues. CONCLUSION: NODAGA-RGDyK was reliably labeled with 68Ga and revealed a predicted ED of 0.014 mSv/MBq. Tumour uptake was rapid and significant and was chased with unlabeled RGDyK in a similar manner as adrenal uptake.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/metabolismo , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Animais , Carga Corporal (Radioterapia) , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Radioisótopos de Gálio , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Humanos , Integrina alfaVbeta3/química , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total
4.
Nuklearmedizin ; 48(6): 233-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19795077

RESUMO

AIM: 125I-iododeoxyuridine is a potential Auger radiation therapy agent. Its incorporation in DNA of proliferating cells is enhanced by fluorodeoxyuridine. Here, we evaluated therapeutic activities of 125I-iododeoxyuridine in an optimized fluorodeoxyuridine pre-treatment inducing S-phase synchronization. METHODS: After S-phase synchronization by fluorodeoxyuridine, cells were treated with 125I-iododeoxyuridine. Apoptosis analysis and S-phase synchronization were studied by flow cytometry. Cell survival was determined by colony-forming assay. Based on measured growth parameters, the number of decays per cell that induced killing was extrapolated. RESULTS: Treatment experiments showed that 72 to 91% of synchronized cells were killed after 0.8 and 8 kBq/ml 125I-iododeoxyuridine incubation, respectively. In controls, only 8 to 38% of cells were killed by corresponding 125I-iododeoxyuridine activities alone and even increasing the activity to 80 kBq/ml gave only 42 % killing. Duplicated treatment cycles or repeated fluorodeoxyuridine pre-treatment allowed enhancing cell killing to >95 % at 8 kBq/ml 125I-iododeoxyuridine. About 50 and 160 decays per S-phase cells in controls and S-phase synchronization, respectively, were responsible for the observed cell killing at 0.8 kBq/ml radio-iododeoxyuridine. CONCLUSION: These data show the successful application of fluorodeoxyuridine that provided increased 125I-iododeoxyuridine Auger radiation cell killing efficacy through S-phase synchronization and high DNA incorporation of radio-iododeoxyuridine.


Assuntos
Floxuridina/farmacologia , Glioblastoma/patologia , Glioblastoma/radioterapia , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Divisão do Núcleo Celular/efeitos dos fármacos , Divisão do Núcleo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Glioblastoma/fisiopatologia , Humanos , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...