Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(1): 208-219, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605807

RESUMO

The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.

2.
ACS Nano ; 8(12): 12323-37, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25390073

RESUMO

We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mössbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

3.
Biophys Chem ; 130(3): 114-21, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17881115

RESUMO

Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O(2) and H(2)O(2) as oxidants for Fe(2+) where oxidation can occur either at protein ferroxidase centers or directly on the surface of the growing mineral core. The present study was undertaken to determine whether the nature of the mineral core formed depends on the protein ferroxidase center versus mineral surface mechanism and on H(2)O(2) versus O(2) as the oxidant. The data reveal that similar cores are produced in all instances, suggesting that the structure of the core is thermodynamically, not kinetically controlled. Cores averaging 500 Fe/protein shell and diameter approximately 2.6 nm were prepared and exhibited superparamagnetic blocking temperatures of 19 and 22 K for the H(2)O(2) and O(2) oxidized samples, respectively. The observed blocking temperatures are consistent with the unexpectedly large effective anisotropy constant K(eff)=312 kJ/m(3) recently reported for ferrihydrite nanoparticles formed in reverse micelles [E.L. Duarte, R. Itri, E. Lima Jr., M.S. Batista, T.S. Berquó and G.F. Goya, Large Magnetic Anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles, Nanotechnology 17 (2006) 5549-5555.]. All ferritin samples exhibited two magnetic phases present in nearly equal amounts and ascribed to iron spins at the surface and in the interior of the nanoparticle. At 4.2 K, the surface spins exhibit hyperfine fields, H(hf), of 436 and 445 kOe for the H(2)O(2) and O(2) samples, respectively. As expected, the spins in the interior of the core exhibit larger H(hf) values, i.e. 478 and 486 kOe for the H(2)O(2) and O(2) samples, respectively. The slightly smaller hyperfine field distribution DH(hf) for both surface (78 kOe vs. 92 kOe) and interior spins (45 kOe vs. 54 kOe) of the O(2) sample compared to the H(2)O(2) samples implies that the former is somewhat more crystalline.


Assuntos
Apoferritinas/química , Ferro/metabolismo , Minerais/química , Oxidantes/química , Oxigênio/química , Espectroscopia de Mossbauer , Apoferritinas/metabolismo , Humanos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Minerais/metabolismo , Oxirredução , Estrutura Quaternária de Proteína
4.
Nano Lett ; 7(3): 766-72, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17324002

RESUMO

As-prepared, single-crystalline bismuth ferrite nanoparticles show strong size-dependent magnetic properties that correlate with: (a) increased suppression of the known spiral spin structure (period length of approximately 62 nm) with decreasing nanoparticle size and (b) uncompensated spins and strain anisotropies at the surface. Zero-field-cooled and field-cooled magnetization curves exhibit spin-glass freezing behavior due to a complex interplay between finite size effects, interparticle interactions, and a random distribution of anisotropy axes in our nanoparticle assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...