Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14006, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635193

RESUMO

The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.


Assuntos
Epiderme , Fator 2 de Liberação do Nucleotídeo Guanina , MicroRNAs , Proteínas Proto-Oncogênicas pp60(c-src) , Humanos , Homeostase/genética , Queratinócitos , MicroRNAs/genética , Mitose , Pele , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Fator 2 de Liberação do Nucleotídeo Guanina/genética
3.
Methods Mol Biol ; 742: 213-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547735

RESUMO

Differential proteomics represents an enticing strategy to unmask the proteins involved in CF pathogenesis and to discover potential therapeutic targets and/or markers of disease progression. Quantitative proteomics is possible nowadays owing to the recent progress in protein labelling and/or in label-free approaches, combined to sensitive detection by mass spectrometry (MS). In this chapter, we present one strategy to perform differential quantitative proteomic studies on different cellular compartments of proliferating cell lines expressing wild-type (WT) CFTR and F508del-CFTR using stable isotope labelling in cell culture (SILAC).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Marcação por Isótopo/métodos , Fragmentos de Peptídeos/análise , Proteômica/métodos , Técnicas de Cultura de Células , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Espectrometria de Massas , Modelos Biológicos , Mutação , Fragmentos de Peptídeos/isolamento & purificação , Deleção de Sequência , Tripsina/metabolismo
4.
Br J Pharmacol ; 163(4): 876-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21366549

RESUMO

BACKGROUND AND PURPOSE: The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel in the plasma membrane of epithelia whose mutation is the cause of the genetic disease cystic fibrosis (CF). The most frequent CFTR mutation is deletion of Phe(508) and this mutant protein (delF508CFTR) does not readily translocate to the plasma membrane and is rapidly degraded within the cell. We hypothesized that treating epithelial cells with resveratrol, a natural polyphenolic, phyto-ooestrogenic compound from grapes, could modulate both the expression and localization of CFTR. EXPERIMENTAL APPROACH: Cells endogenously expressing CFTR (MDCK1 and CAPAN1 cells) or delF508CFTR (CFPAC1 and airway epithelial cells, deriving from human bronchial biopsies) were treated with resveratrol for 2 or 18 h. The effect of this treatment on CFTR and delF508CFTR expression and localization was evaluated using RT-PCR, Western blot and immunocytochemistry. Halide efflux was measured with a fluorescent dye and with halide-sensitive electrodes. Production of interleukin-8 by these cells was assayed by ELISA. KEY RESULTS: Resveratrol treatment increased CFTR expression or maturation in immunoblotting experiments in MDCK1 cells or in CFPAC1 cells. Indirect immunofluorescence experiments showed a shift of delF508CFTR localization towards the (peri)-membrane area in CFPAC1 cells and in human airway epithelial cells. A cAMP-dependent increase in membrane permeability to halide was detected in resveratrol-treated CFPAC1 cells, and was inhibited by a selective inhibitor of CFTR. CONCLUSION AND IMPLICATIONS: These results show that resveratrol modulated CFTR expression and localization and could rescue cAMP-dependent chloride transport in delF508CFTR cells.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Estilbenos/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Células Epiteliais/metabolismo , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , Interleucina-8/metabolismo , Mutação , Resveratrol
5.
PLoS One ; 4(10): e7116, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847291

RESUMO

The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2alpha) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2alpha. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-alpha. This was concomitant with increased IL-8 synthesis and cPLA2alpha activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-beta-cyclodextrin induced further cPLA2alpha activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-alpha-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2alpha and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-alpha-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Eicosanoides/química , Animais , Linhagem Celular Tumoral , Colesterol/química , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/metabolismo , Cinética , Microdomínios da Membrana/química , Camundongos , Fosfolipídeos/química , Ligação Proteica , Ressonância de Plasmônio de Superfície , Fator de Necrose Tumoral alfa/metabolismo
6.
J Biol Chem ; 282(4): 2423-32, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17110372

RESUMO

ClC-2 is a broadly expressed member of the voltage-gated ClC chloride channel family. In this study, we aimed to evaluate the role of the membrane lipid environment in ClC-2 function, and in particular the effect of cholesterol and ClC-2 distribution in membrane microdomains. Detergent-resistant and detergent-soluble microdomains (DSM) were isolated from stably transfected HEK293 cells by a discontinuous OptiPrep gradient. ClC-2 was found concentrated in detergent-insoluble membranes in basal conditions and relocalized to DSM upon cholesterol depletion by methyl-beta-cyclodextrin. As assessed by patch clamp recordings, relocalization was accompanied by acceleration of the activation kinetics of the channel. A similar distribution and activation pattern were obtained when cells were treated with the oxidant tert-butyl hydroperoxide and after ATP depletion. In both cases activation was prevented by cholesterol enrichment of cells. We conclude that the cholesterol environment regulates ClC-2 activity, and we provide evidence that the increase in ClC-2 activity in response to acute oxidative or metabolic stress involves relocalization of this channel to DSM.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico , Lipídeos de Membrana/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Potenciais da Membrana , Estresse Oxidativo , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA