Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein J ; 38(5): 608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31236753

RESUMO

The original publication of this article contained a number of grammatical errors. Unfortunately, an incorrect version of the file that did not include some final language editing was inadvertently published online. The original article has been corrected.

2.
Protein J ; 38(5): 598-607, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31119598

RESUMO

Human cystatin C (HCC) binds and inhibits all types of cysteine proteases from the papain family, including cathepsins (a group of enzymes that participate in a variety of physiological processes), which are some of its natural targets. The affinities of diverse proteases for HCC, expressed as equilibrium binding constants (Kb), range from 106 to 1014 M-1. Isothermal titration calorimetry (ITC) is one of the most useful techniques to characterize the thermodynamics of molecular associations, making it possible to dissect the binding free energy into its enthalpic and entropic components. This information, together with the structural changes that occur during the different associations, could enable better understanding of the molecular basis of affinity. Notwithstanding the high sensitivity of modern calorimeters, ITC requires protein concentrations in at least the 10-100 µM range to obtain reliable data, and it is known that HCC forms oligomers in this concentration range. We present herein a comparative study of the structural, thermal stability, and oligomerization properties of HCC and its stabilized variant (sHCC) L47C/G69C (which possesses an additional disulfide bridge) as well as their binding thermodynamics to the protease chymopapain, analyzed by ITC. The results show that, because sHCC remains monomeric, it is a better reporter than wild-type HCC to characterize the thermodynamics of binding to cysteine proteases.


Assuntos
Cistatina C/química , Cistatina C/metabolismo , Cisteína Proteases/metabolismo , Cistatina C/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...