Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 33(7): 924-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472917

RESUMO

OBJECTIVE: To investigate the toxicity and antibacterial application of antimicrobial peptide-functionalized silver-coated carbon nanotubes against Staphylococcus infection using a full thickness human three-dimensional skin model. MATERIALS AND METHODS: The three-dimensional skin formation on the scaffolds was characterized by electron microscopy and investigation of several skin cell markers by real time-reverse transcriptase polymerase chain reaction. Functionalized silver-coated carbon nanotubes were prepared using carboxylated silver-coated carbon nanotubes with antimicrobial peptides such as TP359, TP226 and TP557. Following the characterization and toxicity evaluation, the antibacterial activity of functionalized silver-coated carbon nanotubes against Staphylococcus aureus was investigated using a bacterial enumeration assay and scanning electron microscopy. For this purpose, a scar on the human three-dimensional skin grown on Alvetex scaffold using keratinocytes and fibroblasts cells was created by taking precaution not to break the scaffold beneath, followed by incubation with 5 µg/mL of functionalized silver-coated carbon nanotubes re-suspended in minimum essential medium for 2 h. Post 2-h incubation, 200 µL of minimum essential medium containing 1 × 104 colony forming units of Staphylococcus aureus were incubated for 2 h. After incubation with bacteria, the colony forming unit/gram (cfu/g) of skin tissue were counted using the plate count assay and the samples were processed for scanning electron microscopy analysis. RESULTS: MTT assay revealed no toxicity of functionalized silver-coated carbon nanotubes to the skin cells such as keratinocytes and fibroblasts at 5 µg/mL with 98% cell viability. The bacterial count increased from 104 to 108 cfu/g in the non-treated skin model, whereas skin treated with functionalized silver-coated carbon nanotubes showed only a small increase from 104 to 105 cfu/g (1000-fold viable cfu difference). Scanning electron microscopy analysis showed the presence of Staphylococcus aureus on the non-treated skin as opposed to the treated skin. CONCLUSION: Thus, our results showed that functionalized silver-coated carbon nanotubes are not only non-toxic, but also help reduce the infection due to their antibacterial activity. These findings will aid in the development of novel antibacterial skin substitutes.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Prata/farmacologia , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Humanos , Nanotubos de Carbono/química , Peptídeos/química , Prata/química , Pele/efeitos dos fármacos , Pele/ultraestrutura
2.
Artigo em Inglês | MEDLINE | ID: mdl-29694600

RESUMO

Escherichia coli causes various ailments such as septicemia, enteritis, foodborne illnesses, and urinary tract infections which are of concern in the public health field due to antibiotic resistance. Silver nanoparticles (AgNP) are known for their biocompatibility and antibacterial activity, and may prove to be an alternative method of treatment, especially as wound dressings. In this study, we compared the antibacterial efficacy of two polymer-coated silver nanoparticles either containing 10% Ag (Ag 10% + Polymer), or 99% Ag (AgPVP) in relation to plain uncoated silver nanoparticles (AgNP). Atomic force microscopy was used to characterize the nanoparticles, and their antibacterial efficacy was compared by the minimum inhibitory concentration (MIC) and bacterial growth curve assays, followed by molecular studies using scanning electron microscopy (SEM) and (qRT- PCR). AgNP inhibited the growth of E. coli only at 0.621 mg/mL, which was double the concentration required for both coated nanoparticles (0.312 mg/mL). Similarly, bacterial growth was impeded as early as 8 h at 0.156 mg/mL of both coated nanoparticles as compared to 0.312 mg/mL for plain AgNP. SEM data showed that nanoparticles damaged the cell membrane, resulting in bacterial cell lysis, expulsion of cellular contents, and complete disintegration of some cells. The expression of genes associated with the TCA cycle (aceF and frdB) and amino acid metabolism (gadB, metL, argC) were substantially downregulated in E. coli treated with nanoparticles. The reduction in the silver ion (Ag+) concentration of polymer-coated AgNP did not affect their antibacterial efficacy against E. coli.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Polímeros/farmacologia , Prata/farmacologia , Análise de Variância , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polímeros/química , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Prata/química , Fatores de Tempo
3.
J Biol Eng ; 11: 49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255480

RESUMO

The repair or replacement of damaged skins is still an important, challenging public health problem. Immune acceptance and long-term survival of skin grafts represent the major problem to overcome in grafting given that in most situations autografts cannot be used. The emergence of artificial skin substitutes provides alternative treatment with the capacity to reduce the dependency on the increasing demand of cadaver skin grafts. Over the years, considerable research efforts have focused on strategies for skin repair or permanent skin graft transplantations. Available skin substitutes include pre- or post-transplantation treatments of donor cells, stem cell-based therapies, and skin equivalents composed of bio-engineered acellular or cellular skin substitutes. However, skin substitutes are still prone to immunological rejection, and as such, there is currently no skin substitute available to overcome this phenomenon. This review focuses on the mechanisms of skin rejection and tolerance induction and outlines in detail current available strategies and alternatives that may allow achieving full-thickness skin replacement and repair.

4.
PLoS One ; 12(12): e0189662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244827

RESUMO

The molecular mechanisms involved in breast cancer progression and metastasis still remain unclear to date. It is a heterogeneous disease featuring several different phenotypes with consistently different biological characteristics. Neuroligins are neural cell adhesion molecules that have been implicated in heterotopic cell adhesion. In humans, alterations in neuroligin genes are implicated in autism and other cognitive diseases. Until recently, neuroligins have been shown to be abundantly expressed in blood vessels and also play a role implicated in the growth of glioma cells. Here we report increased expression of neuroligin 4X (NLGN4X) in breast cancer. We found NLGN4X was abundantly expressed in breast cancer tissues. NLGN4X expression data for all breast cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) was analyzed. Correlation between NLGN4X levels and clinicopathologic parameters were analyzed within Oncomine datasets. Evaluation of these bioinfomatic datasets results revealed that NLGN4X expression was higher in triple negative breast cancer cells, particularly the basal subtype and tissues versus non-triple-negative sets. Its level was also observed to be higher in metastatic tissues. RT-PCR, flow cytometry and immunofluorescence study of MDA-MB-231 and MCF-7 breast cancer cells validated that NLGN4X was increased in MDA-MB-231. Knockdown of NLGN4X expression by siRNA decreased cell proliferation and migration significantly in MDA-MB-231 breast cancer cells. NLGN4X knockdown in MDA-MB-231 cells resulted in induction of apoptosis as determined by annexin staining, elevated caspase 3/7 and cleaved PARP by flow cytometry. High NLGN4X expression highly correlated with decrease in relapse free-survival in TNBC. NLGN4X might represent novel biomarkers and therapeutic targets for breast cancer. Inhibition of NLGN4X may be a new target for the prevention and treatment of breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Moléculas de Adesão Celular Neuronais/genética , Recidiva Local de Neoplasia/genética , Neoplasias de Mama Triplo Negativas/genética , Apoptose/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/patologia
5.
Int J Mol Sci ; 18(4)2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387714

RESUMO

Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.


Assuntos
Fenômenos Fisiológicos da Pele , Engenharia Tecidual/métodos , Cicatrização , Materiais Biocompatíveis , Humanos , Regeneração , Transplante de Pele , Pele Artificial
6.
Int J Mol Sci ; 17(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27898014

RESUMO

Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Polímeros/química , Pele , Alicerces Teciduais/química , Cicatrização/fisiologia
7.
Adv Virol ; 2016: 7971847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27688769

RESUMO

Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections.

8.
Nanomedicine ; 11(5): 1265-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25804413

RESUMO

Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR: Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Nanopartículas Metálicas , Prata/farmacologia , Anticarcinógenos/química , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Humanos , Queratinócitos/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta
9.
Biomaterials ; 35(35): 9484-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154664

RESUMO

Reduced toxicity and ease of modification make gold nanoparticles (GNPs) suitable for targeted delivery, bioimaging and theranostics by conjugating cell-penetrating peptides (CPPs). This study presents the biodistribution and enhanced intracellular uptake of GNPs functionalized with VG-21, a CPP derived from vesicular stomatitis virus glycoprotein (G). Cell penetrating efficiency of VG-21 was demonstrated using CellPPD web server, conjugated to GNPs and were characterized using, UV-visible and FTIR spectroscopy, transmission electron microscopy, dynamic light scattering and zeta potential. Uptake of VG-21 functionalized GNPs (fGNPs) was tested in eukaryotic cell lines, HEp-2, HeLa, Vero and Cos-7, using flow cytometry, fluorescence and transmission electron microscopy (TEM), and inductively coupled plasmon optical emission spectroscopy (ICP-OES). The effects of nanoparticles on stress and toxicity related genes were studied in HEp-2 cells. Cytokine response to fGNPs was studied in vitro and in vivo. Biodistribution of nanoparticles was studied in BALB/c mice using TEM and ICP-OES. VG-21, GNPs and fGNPs had little to no effect on cell viability. Upon exposure to fGNPs, HEp-2 cells revealed minimal down regulation of stress response genes. fGNPs displayed higher uptake than GNPs in all cell lines with highest internalization by HEp-2, HeLa and Cos-7 cells, in endocytotic vesicles and nuclei. Cytokine ELISA showed that mouse J774 cells exposed to fGNPs produced less IL-6 than did GNP-treated macrophage cells, whereas TNF-α levels were low in both treatment groups. Biodistribution studies in BALB/c mice revealed higher accumulation of fGNPs than GNPs in the liver and spleen. Histopathological analyses showed that fGNP-treated mice accumulated 35 ng/mg tissue and 20 ng/mg tissue gold in spleen and liver respectively, without any adverse effects. Likewise, serum cytokines were low in both GNP- and fGNP-treated mice. Thus, VG-21-conjugated GNPs have enhanced cellular internalization and are suitable for various biomedical applications as nano-conjugates.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Ouro/farmacocinética , Nanopartículas Metálicas/química , Animais , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Ouro/química , Células HeLa , Humanos , Interleucina-6/metabolismo , Glicoproteínas de Membrana/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Distribuição Tecidual , Fator de Necrose Tumoral alfa/metabolismo , Células Vero , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/farmacocinética
10.
Int J Nanomedicine ; 8: 1403-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23610520

RESUMO

The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs), which consisted of poly(2-hydroxyethyl methacrylate) nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV)-F gene construct (a model for a DNA vaccine). The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM), fluorescence activated cell sorting (FACS), and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR), we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Nanosferas/química , Poli-Hidroxietil Metacrilato/química , Transfecção/métodos , Análise de Variância , Animais , Células COS , Quitosana/administração & dosagem , Chlorocebus aethiops , Portadores de Fármacos/administração & dosagem , Feminino , Dosagem de Genes , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/administração & dosagem , Poli-Hidroxietil Metacrilato/administração & dosagem , Reação em Cadeia da Polimerase , RNA Mensageiro , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sinciciais Respiratórios/genética , Vacinas de DNA/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
11.
Int J Nanomedicine ; 7: 5361-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091380

RESUMO

Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Nanocápsulas/uso terapêutico , Nanotubos de Carbono/efeitos adversos , Animais , Humanos
12.
Anal Bioanal Chem ; 400(10): 3323-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21424774

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is used for the identification of the presence of hazardous bacteria in food. In this study, our main focus was centered on the identification of S. enterica serovar Typhimurium, a Gram-negative foodborne pathogen, in various liquids such as milk, chicken broth, and brain heart infusion due to the infection being most prevalent in raw meat and dairy products. A Nd:YAG laser of operating wavelength 266 nm was used to obtain the spectra from the artificially inoculated liquid samples. A series of experiments were performed to determine the effectiveness of LIBS to discriminate the bacteria from the background liquids. These results are compared with competing modern molecular methods of detection which include polymerase chain reaction (PCR) and quantitative real-time PCR. In addition to analyzing S. enterica serovar Typhimurium, another common Gram-negative, Escherichia coli, as well as Gram-positive pathogen, Staphlycoccus auerus, were used to determine the specificity of the LIBS technique.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Salmonella typhimurium/isolamento & purificação , Análise Espectral/métodos , Lasers , Reação em Cadeia da Polimerase
13.
Nanomaterials (Basel) ; 1(1): 31-63, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28348279

RESUMO

Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs) are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology.

14.
Nanotechnology ; 21(9): 095102, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20139493

RESUMO

Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of approximately 80 microm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 microg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 +/- 6.72 mm, 19.4 +/- 3.64 mm, 21.9 +/- 4.33 mm, and 24.1 +/- 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 +/- 2.13 mm, 28.6 +/- 4.27 mm, 22.6 +/- 1.27 mm, and 27.0 +/- 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 microg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial strains tested. Further, the Nylon-6 nanocomposite fibers infused with Ag/CNTs inhibited bacterial growth by 11-20%. Our results suggest that nylon nanocomposite fibers infused with Ag-coated CNTs have significant antimicrobial activity.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Caprolactama/análogos & derivados , Nanopartículas Metálicas/química , Nanocompostos/química , Nanotubos de Carbono/química , Polímeros/síntese química , Prata/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bioensaio , Varredura Diferencial de Calorimetria , Caprolactama/síntese química , Caprolactama/química , Contagem de Colônia Microbiana , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Polímeros/química , Temperatura , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
15.
Mol Biotechnol ; 43(3): 200-11, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19507066

RESUMO

RNA interference (RNAi) is a post-transcriptional, gene silencing mechanism which uses small interfering RNA molecules (siRNA) for gene silencing. Respiratory Syncytial Virus (RSV) is an important respiratory pathogen of medical significance that causes high mortality in infants. The fusion (F) protein of RSV is a good target for therapeutic purposes as it is primarily responsible for penetration of the virus into host cells and subsequent syncytium formation during infection. In the present study, four siRNAs were designed and used individually as well as a mixture, to silence the RSV F gene. The relationship between siRNA design, target RNA structure, and their thermodynamics was also investigated. Silencing of F gene was observed using indirect immunofluorescence, western blot, reverse transcription PCR, and progeny viral titers. Our results show F gene silencing by all the four siRNAs individually and collectively. RT-PCR analysis revealed a decrease in mRNA level which corresponded to decreased F protein expression. siRNAs also inhibited RSV progeny as shown by viral titer estimation on infected HEp-2 cells. The present study demonstrates the silencing of the F gene using siRNA. Thermodynamic characteristics of the target RSV mRNA and siRNA seem to play an important role in siRNA gene silencing efficiency.


Assuntos
Conformação de Ácido Nucleico , Interferência de RNA , RNA Mensageiro/química , RNA Interferente Pequeno/química , Vírus Sinciciais Respiratórios/genética , Proteínas Virais de Fusão/genética , Linhagem Celular Tumoral , Técnica Indireta de Fluorescência para Anticorpo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Proteínas Virais de Fusão/metabolismo , Ensaio de Placa Viral
16.
Nanomedicine ; 5(4): 463-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19341819

RESUMO

This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine. Antigenic regions of RSV F, M2, and G genes were cloned into the human cytomegalovirus promoter-based constitutive expression vector, resulting in a DNA vaccine vector named DR-FM2G. This vector was used to formulate DNA-chitosan nanoparticles (DCNPs) using a complex coacervation process that yielded an encapsulation efficiency of 94.7%. The DCNP sizes ranged from 80 to 150 nm with uniform size distribution and spherical shape. DNA release was between 50% and 60% when DCNPs were incubated with similar gastrointestinal fluid (pH 2), whereas 21% to 25% of DNA was released from DCNPs in 30 minutes at pH 10. Differential scanning calorimetry showed DCNPs to be more stable than naked DNA or chitosan, offering protection from DNA degradation by nucleases. DCNPs were not toxic to cells when used at concentrations < or =400 microg/mL. Immunohistochemical and real-time polymerase chain reaction results showed a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA. FROM THE CLINICAL EDITOR: This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine, showing a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Nanopartículas/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Animais , Células COS , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/farmacologia , Chlorocebus aethiops , DNA Viral/administração & dosagem , DNA Viral/imunologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imuno-Histoquímica , Injeções Intravenosas , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Propriedades de Superfície/efeitos dos fármacos , Transfecção , Vacinas de DNA/imunologia , Proteínas Virais/imunologia
17.
Chemosphere ; 75(7): 883-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19237186

RESUMO

The biodegradation of endosulfan and the metabolites formed were studied using fungi both in broth culture as well as in soil microcosm. Fungal strains were isolated from soil and grown in broth Czapek-dox medium. The strain which utilized endosulfan and showed maximum growth was selected for detailed studies. Maximum degrading capability in shake flask culture was shown by Aspergillus sydoni which degraded 95% of endosulfan alpha and 97% of endosulfan beta in 18 d of incubation. Soil microcosm study was also carried out using this strain in six different treatments. Endosulfan sulfate was the main metabolite formed along with small quantity of endosulfan ether and endosulfan lactone both in broth culture and soil microcosm. This isolated fungal strain will be a potential source for endosulfan degrading enzymes and can be used for bioremediation at the contaminated sites.


Assuntos
Aspergillus/efeitos dos fármacos , Endossulfano/metabolismo , Inseticidas/metabolismo , Poluentes do Solo/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Biodegradação Ambiental , Contagem de Colônia Microbiana , Endossulfano/química , Inseticidas/química , Cinética , Microbiologia do Solo , Poluentes do Solo/química , Fatores de Tempo
18.
J Environ Sci Health B ; 41(4): 377-83, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16753957

RESUMO

Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 microCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg -1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha-1, deltamethrin @ 12.5 g a.i ha-1, endosulfan @ 750 g a.i ha-1, cypermethrin @ 60 g a.i ha-1, and triazophos @ 600 g a.i ha-1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15-30 cm soil layer was observed in both the experimental setups. In the 15-30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg-1d. wt. soil was detected after 270 days.


Assuntos
Inseticidas/análise , Monocrotofós/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Adsorção , Radioisótopos de Carbono , Monitoramento Ambiental , Gossypium/química , Inseticidas/química , Monocrotofós/química , Fatores de Tempo , Clima Tropical
19.
J Environ Sci Health B ; 41(5): 681-92, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16785175

RESUMO

Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan beta residues were always higher as compared to endosulfan alpha. From 78 to 85 days, 5.0% and 20.4% decrease in alpha and beta endosulfan residues was observed, respectively. Endosulfan beta isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g-1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments.


Assuntos
Artrópodes/metabolismo , Endossulfano/análise , Inseticidas/análise , Compostos Organotiofosforados/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Animais , Endossulfano/toxicidade , Monitoramento Ambiental , Gossypium/química , Inseticidas/toxicidade , Isomerismo , Cinética , Compostos Organotiofosforados/toxicidade , Resíduos de Praguicidas/toxicidade , Poluentes do Solo/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...