Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(36): 32945-32956, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426633

RESUMO

This work presents the development of a novel chalcogenization process for the fabrication of Cu2ZnSn(S,Se)4 (CZTSSe or kesterite)-based solar cells that enable the generation of sharp graded anionic compositional profiles with high S content at the top and low S content at the bottom. This is achieved through the optimization of the annealing parameters including the study of several sulfur sources with different predicted reactivities (elemental S, thiourea, SnS, and SeS2). As a result, depending on the sulfur source employed, devices with superficially localized maximum sulfur content between 50 and 20% within the charge depletion zone and between 10 and 30% toward the bulk material are obtained. This complex graded structure is confirmed and characterized by combining multiwavelength depth-resolved Raman spectroscopy measurements together with in-depth Auger electron spectroscopy and X-ray fluorescence. In addition, the devices fabricated with such graded band gap absorbers are shown to be fully functional with conversion efficiencies around 9% and with improved VOC deficit values that correlate with the presence of a gradient. These results represent one step forward toward anionic band gap grading in kesterite solar cells.

2.
J Am Chem Soc ; 134(19): 8018-21, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22545682

RESUMO

Improvement of the efficiency of Cu(2)ZnSnS(4) (CZTS)-based solar cells requires the development of specific procedures to remove or avoid the formation of detrimental secondary phases. The presence of these phases is favored by the Zn-rich and Cu-poor conditions that are required to obtain device-grade layers. We have developed a selective chemical etching process based on the use of hydrochloric acid solutions to remove Zn-rich secondary phases from the CZTS film surface, which are partly responsible for the deterioration of the series resistance of the cells and, as a consequence, the conversion efficiency. Using this approach, we have obtained CZTS-based devices with 5.2% efficiency, which is nearly twice that of the devices we have prepared without this etching process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...