Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 198, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037860

RESUMO

Honey bee, Apis mellifera, drones are typically haploid, developing from an unfertilized egg, inheriting only their queen's alleles and none from the many drones she mated with. Thus the ordered combination or 'phase' of alleles is known, making drones a valuable haplotype resource. We collated whole-genome sequence data for 1,407 drones, including 45 newly sequenced Scottish drones, collectively representing 19 countries, 8 subspecies and various hybrids. Following alignment to Amel_HAv3.1, variant calling and quality filtering, we retained 17.4 M high quality variants across 1,328 samples with a genotyping rate of 98.7%. We demonstrate the utility of this haplotype resource, AmelHap, for genotype imputation, returning >95% concordance when up to 61% of data is missing in haploids and up to 12% of data is missing in diploids. AmelHap will serve as a useful resource for the community for imputation from low-depth sequencing or SNP chip data, accurate phasing of diploids for association studies, and as a comprehensive reference panel for population genetic and evolutionary analyses.


Assuntos
Abelhas , Genoma de Inseto , Animais , Feminino , Sequência de Bases , Abelhas/genética , Evolução Biológica , Genótipo , Projeto HapMap
2.
Anim Genet ; 53(1): 156-160, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729804

RESUMO

Recapping of Varroa destructor-infested brood cells is a trait that has recently attracted interest in honey bee breeding to select mite-resistant Apis mellifera colonies. To investigate the genetic architecture of this trait, we evaluated a sample of A. mellifera mellifera colonies (N = 155) from Switzerland and France and performed a genome-wide association study, using a pool of 500 workers per colony for next-generation sequencing. The results revealed that two QTL were significantly (P < 0.05) associated with recapping of V. destructor-infested brood cells. The best-associated QTL is located on chromosome 5 in a region previously found to be associated with grooming behaviour, a resistance trait against V. destructor, in A. mellifera and Apis cerana. The second best-associated QTL is located on chromosome 4 in an intron of the Dscam gene, which is involved in neuronal wiring. Previous research demonstrated that genes involved in neuronal wiring are associated with recapping and varroa sensitive hygiene. Therefore, our study confirms the role of a gene region on chromosome 5 in social immunity and simultaneously provides novel insights into genetic interactions between common mite resistance traits in honey bees.


Assuntos
Abelhas/genética , Comportamento de Nidação , Locos de Características Quantitativas , Varroidae/fisiologia , Animais , Abelhas/parasitologia , França , Estudo de Associação Genômica Ampla , Reprodução , Suíça
3.
Anim Genet ; 52(4): 472-481, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33970494

RESUMO

The identification of quantitative trait loci (QTL) through genome-wide association studies (GWAS) is a powerful method for unravelling the genetic background of selected traits and improving early-stage predictions. In honey bees (Apis mellifera), past genetic analyses have particularly focused on individual queens and workers. In this study, we used pooled whole-genome sequences to ascertain the genetic variation of the entire colony. In total, we sampled 216 Apis mellifera mellifera and 28 Apis mellifera carnica colonies. Different experts subjectively assessed the gentleness and calmness of the colonies using a standardised protocol. Conducting a GWAS for calmness on 211 purebred A. m. mellifera colonies, we identified three QTL, on chromosomes 8, 6, and 12. The two first QTL correspond to LOC409692 gene, coding for a disintegrin and metalloproteinase domain-containing protein 10, and to Abscam gene, coding for a Dscam family member Abscam protein, respectively. The last gene has been reported to be involved in the domestication of A. mellifera. The third QTL is located 13 kb upstream of LOC102655631, coding for a trehalose transporter. For gentleness, two QTL were identified on chromosomes 4 and 3. They are located within gene LOC413669, coding for a lap4 protein, and gene LOC413416, coding for a bicaudal C homolog 1-B protein, respectively. The identified positional candidate genes of both traits mainly affect the olfaction and nervous system of honey bees. Further research is needed to confirm the results and to better understand the genetic and phenotypic basis of calmness and gentleness.


Assuntos
Criação de Abelhas , Abelhas/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Agressão , Animais , Sequenciamento Completo do Genoma
4.
Anim Genet ; 48(6): 704-707, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28872253

RESUMO

Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations.


Assuntos
Abelhas/genética , Genética Populacional , Genoma de Inseto , Seleção Genética , Animais , Animais Domésticos/genética , Cruzamento , França , Haplótipos , Polimorfismo de Nucleotídeo Único , Suíça
5.
J Anim Sci ; 91(2): 588-604, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23148259

RESUMO

The mule duck, an interspecific hybrid obtained by crossing common duck (Anas platyrhynchos) females with Muscovy (Cairina moschata) drakes, is widely used for fatty liver production. The purpose of the present study was to detect and map single and pleiotropic QTL that segregate in the common duck species, and influence the expression of traits in their overfed mule duck offspring. To this end, we generated a common duck backcross (BC) population by crossing Kaiya and heavy Pekin experimental lines, which differ notably in regard to the BW and overfeeding ability of their mule progeny. The BC females were mated to Muscovy drakes and, on average, 4 male mule ducks hatched per BC female (1600 in total) and were measured for growth, metabolism during growth and the overfeeding period, overfeeding ability, and the quality of their breast meat and fatty liver. The phenotypic value of BC females was estimated for each trait by assigning to each female the mean value of the phenotypes of her offspring. Estimations allowed for variance, which depended on the number of male offspring per BC and the heritability of the trait considered. The genetic map used for QTL detection consisted of 91 microsatellite markers aggregated into 16 linkage groups (LG) covering a total of 778 cM. Twenty-two QTL were found to be significant at the 1% chromosome-wide threshold level using the single-trait detection option of the QTLMap software. Most of the QTL detected were related to the quality of breast meat and fatty liver: QTL for meat pH 20 min post mortem were mapped to LG4 (at the 1% genome-wide significance level), and QTL for meat lipid content and cooking losses were mapped to LG2a. The QTL related to fatty liver weight and liver protein and lipid content were for the most part detected on LG2c and LG9. Multitrait analysis highlighted the pleiotropic effects of QTL in these chromosome regions. Apart from the strong QTL for plasma triglyceride content at the end of the overfeeding period mapped to chromosome Z using single-trait analysis, all metabolic trait QTL were detected with the multitrait approach: the QTL mapped to LG14 and LG21 affected the plasma cholesterol and triglyceride contents, whereas the QTL mapped to LG2a seemed to impact glycemia and the basal plasma corticosterone content. A greater density genetic map will be needed to further fine map the QTL.


Assuntos
Criação de Animais Domésticos/métodos , Cruzamentos Genéticos , Fígado/fisiologia , Carne/normas , Ração Animal , Animais , Dieta/veterinária , Patos/genética , Feminino , Ligação Genética , Genótipo , Masculino , Repetições de Microssatélites , Locos de Características Quantitativas , Fatores Sexuais
6.
Anim Genet ; 41(4): 400-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20096032

RESUMO

An F(2) population (695 individuals) was established from broiler chickens divergently selected for either high (HG) or low (LG) growth, and used to localize QTL for developmental changes in body weight (BW), shank length (SL9) and shank diameter (SD9) at 9 weeks. QTL mapping revealed three genome-wide QTL on chromosomes (GGA) 2, 4 and 26 and three suggestive QTL on GGA 1, 3 and 5. Most of the BW QTL individually explained 2-5% of the phenotypic variance. The BW QTL on GGA2 explained about 7% of BW from 3 to 7 weeks of age, while that on GGA4 explained 15% of BW from 5 to 9 weeks. The BW QTL on GGA2 and GGA4 could be associated with early and late growth respectively. The GGA4 QTL also had the largest effect on SL9 and SD9 and explained 7% and 10% of their phenotypic variances respectively. However, when SL9 and SD9 were corrected with BW9, a shank length percent QTL was identified on GGA2. We identified novel QTL and also confirmed previously identified loci in other chicken populations. As the foundation population was established from commercial broiler strains, it is possible that QTL identified in this study could still be segregating in commercial strains.


Assuntos
Peso Corporal , Galinhas/genética , Variação Genética , Extremidade Inferior/anatomia & histologia , Locos de Características Quantitativas , Seleção Genética , Animais , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Cromossomos , Feminino , Estudo de Associação Genômica Ampla , Masculino
7.
Cytogenet Genome Res ; 126(1-2): 21-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20016154

RESUMO

Radiation hybrid mapping has emerged in the end of the 1990 s as a successful and complementary approach to map genomes, essentially because of its ability to bridge the gaps between genetic and clone-based physical maps, but also using comparative mapping approaches, between 'gene-rich' and 'gene-poor' maps. Since its early development in human, radiation hybrid mapping played a pivotal role in the process of mapping animal genomes, especially mammalian ones. We review here all the different steps involved in radiation hybrid mapping from the constitution of panels to the construction of maps. A description of its contribution to whole genome maps with a special emphasis on domestic animals will also be presented. Finally, current applications of radiation hybrid mapping in the context of whole genome assemblies will be described.


Assuntos
Animais Domésticos/genética , Mapeamento Cromossômico , Genoma , Células Híbridas/efeitos da radiação , Animais , Marcadores Genéticos , Genótipo
8.
Anim Genet ; 40(5): 590-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19422366

RESUMO

The ability of chickens to carry Salmonella without displaying disease symptoms is responsible for Salmonella propagation in poultry stocks and for subsequent human contamination through the consumption of contaminated eggs or meat. The selection of animals more resistant to carrier state might be a way to decrease the propagation of Salmonella in poultry stocks and its transmission to humans. Five QTL controlling variation for resistance to carrier state in a chicken F(2) progeny derived from the White Leghorn inbred lines N and 6(1) had been previously identified using a selective genotyping approach. Here, a second analysis on the whole progeny was performed, which led to the confirmation of two QTL on chromosomes 2 and 16. To assess the utility of these genomic regions for selection in commercial lines, we tested them together with other QTL identified in an [Nx6(1)] x N backcross progeny and with the candidate genes SLC11A1 and TLR4. We used a commercial line divergently selected for either low or high carrier-state resistance both in young chicks and in adult hens. In divergent chick lines, one QTL on chromosome 1 and one in the SLC11A1 region were significantly associated with carrier-state resistance variations; in divergent adult lines, one QTL located in the major histocompatibility complex on chromosome 16 and one in the SLC11A1 region were involved in these variations. Genetic studies conducted on experimental lines can therefore be of potential interest for marker-assisted selection in commercial lines.


Assuntos
Portador Sadio/veterinária , Galinhas , Imunidade Inata/genética , Doenças das Aves Domésticas/genética , Locos de Características Quantitativas/genética , Salmonelose Animal/genética , Animais , Cruzamento/métodos , Portador Sadio/microbiologia , Genótipo , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Seleção Genética
9.
Dev Biol (Basel) ; 132: 353-357, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18817326

RESUMO

Increasing resistance to acute Salmonellosis (that is, contamination level shortly after infection) is not sufficient to reduce the risk for consumers to be contaminated by Salmonella. Indeed, animals may remain contaminated at a low level for weeks or months. Increased resistance to the Salmonella carrier state, i.e., animals' ability to clear bacteria, is needed; it involves measuring bacterial contamination several weeks after inoculation with a low dose. To study such resistance traits, three convergent approaches were used. A quantitative trait loci (QTL) study was performed, taking advantage of inbred lines differing in resistance. Several QTLs controlling resistance at a younger age were identified and are currently being confirmed in a new cross before finer mapping, using advanced intercross lines. These inbred lines are also presently being compared using functional genomics. In parallel, a selection experiment for increased or decreased resistance at a younger and a later age was undertaken. Besides providing genetic models differing in their levels of resistance, it underlined the importance of the choice of selection criterion, whether marker assisted or not. Indeed, genes controlling resistance are strongly dependant on age; selecting for resistance at a younger age might result in increased susceptibility at an older age. Finally, the results of this experiment were used in a model of the intra-flock propagation of Salmonella. It showed that introducing a proportion of resistant animals within a flock of susceptible hens could dramatically change the evolution of contamination. Moreover, it demonstrated the magnitude of synergy between selection and vaccination, which should enhance the interest of increased resistance. The results show that selection for increased resistance to the Salmonella carrier state may be efficient, providing that the appropriate criteria of selection are used.


Assuntos
Portador Sadio , Galinhas/genética , Genômica , Salmonelose Animal/genética , Animais , Locos de Características Quantitativas , Salmonelose Animal/imunologia
10.
Cytogenet Genome Res ; 117(1-4): 14-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17675840

RESUMO

The ChickRH6 radiation hybrid panel has been used to construct consensus chromosome radiation hybrid (RH) maps of the chicken genome. Markers genotyped were either from throughout the genome or targeted to specific chromosomes and a large proportion (one third) of data was the result of collaborative efforts. Altogether, 2,531 markers were genotyped, allowing the construction of RH reference maps for 20 chromosomes and linkage groups for four other chromosomes. Amongst the markers, 581 belong to the framework maps, while 1,721 are on the comprehensive maps. Around 800 markers still have to be assigned to linkage groups. Our attempt to assign the supercontigs from the chrun (virtual chromosome containing all the genome sequence that could not be attributed to a chromosome) as well as EST (Expressed Sequence Tag) contigs that do not have a BLAST hit in the genome assembly led to the construction of new maps for microchromosomes either absent or for which very little data is present in the genome assembly. RH data is presented through our ChickRH webserver (http://chickrh.toulouse.inra.fr/), which is a mapping tool as well as the official repository RH database for genotypes. It also displays the RH reference maps and comparison charts with the sequence thus highlighting the possible discrepancies. Future improvements of the RH maps include complete coverage of the sequence assigned to chromosomes, further mapping of the chrun and mapping of EST contigs absent from the assembly. This will help finish the mapping of the smallest gene-rich microchromosomes.


Assuntos
Galinhas/genética , Cromossomos/genética , Mapeamento de Híbridos Radioativos/métodos , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , Feminino , Marcadores Genéticos , Alinhamento de Sequência
11.
Anim Genet ; 38(3): 303-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17539975

RESUMO

Karyotypes of chicken (Gallus gallus domesticus; 2n = 78) and mallard duck (Anas platyrhynchos; 2n = 80) share the typical organization of avian karyotypes including a few macrochromosome pairs, numerous indistinguishable microchromosomes, and Z and W sex chromosomes. Previous banding studies revealed great similarities between chickens and ducks, but it was not possible to use comparative banding for the microchromosomes. In order to establish precise chromosome correspondences between these two species, particularly for microchromosomes, we hybridized 57 BAC clones previously assigned to the chicken genome to duck metaphase spreads. Although most of the clones showed similar localizations, we found a few intrachromosomal rearrangements of the macrochromosomes and an additional microchromosome pair in ducks. BAC clones specific for chicken microchromosomes were localized to separate duck microchromosomes and clones mapping to the same chicken microchromosome hybridized to the same duck microchromosome, demonstrating a high conservation of synteny. These results demonstrate that the evolution of karyotypes in avian species is the result of fusion and/or fission processes and not translocations.


Assuntos
Anseriformes/genética , Mapeamento Cromossômico , Evolução Molecular , Galliformes/genética , Sintenia/genética , Animais , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie
12.
Anim Genet ; 36(5): 396-400, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16167982

RESUMO

The objective of this work was to map classical markers (plumage colours and blood proteins) on the microsatellite linkage map of the Japanese quail (Coturnix japonica). The segregation data on two plumage colours and three blood proteins were obtained from 25 three-generation families (193 F2 birds). Linkage analysis was carried out for these five classical markers and 80 microsatellite markers. A total of 15 linkage groups that included the five classical loci and 69 of the 80 microsatellite markers were constructed. Using the BLAST homology search against the chicken genome sequence, three quail linkage groups, QL8, QL10 and QL13, were suggested to be homologous to chicken chromosomes GGA9, GGA20 and GGA24, respectively. Two plumage colour loci, black at hatch (Bh) and yellow (Y), and the three blood protein loci, transferrin (Tf), haemoglobin (Hb-1) and prealbumin-1 (Pa-1), were assigned to CJA01, QL10, QL8, CJA14 and QL13, respectively.


Assuntos
Proteínas Sanguíneas/genética , Mapeamento Cromossômico , Coturnix/genética , Plumas , Pigmentação/genética , Animais , Biologia Computacional , Cruzamentos Genéticos , Repetições de Microssatélites/genética , Especificidade da Espécie
13.
Anim Genet ; 36(5): 401-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16167983

RESUMO

A quantitative trait loci (QTL) study was undertaken to identify genome regions involved in the control of fearfulness in Japanese quail (Coturnix japonica). An F2 cross was made between two quail lines divergently selected over 29 generations on duration of tonic immobility (DTI), a catatonic-like state of reduced responsiveness to a stressful stimulation. A total of 1065 animals were measured for the logarithm of DTI (LOGTI), the number of inductions (NI) necessary to induce the immobility reaction, open-field behaviour including locomotor activity (MOVE), latency before first movement (LAT), number of jumps (JUMP), dejections (DEJ) and shouts (SHOUT), corticosterone level after a contention stress (LOGCORT) and body weight at 2 weeks of age (BW2). A total of 310 animals were included in a genome scan using selective genotyping with 248 AFLP markers. A total of 21 suggestive or genome-wide significant QTL were observed. Two highly significant QTL were identified on linkage group 1 (GL1), one for LOGTI and one for NI. In the vicinity of the QTL for LOGTI, a nearly significant QTL for SHOUT and a suggestive QTL for LAT were also identified. On GL3, genome-wide significant QTL were observed for JUMP and DEJ as well as suggestive QTL for LOGTI, MOVE, SHOUT and LAT. A significant QTL for BW2 was observed on GL2 and a nearly significant one on GL1. These results may be useful in the understanding of fearfulness in quail and related species provided that fearfulness has the same genetic basis.


Assuntos
Mapeamento Cromossômico , Coturnix/genética , Medo , Locos de Características Quantitativas , Animais , Corticosterona/sangue , Cruzamentos Genéticos , Genética Comportamental/métodos , Genômica/métodos , Genótipo , Resposta de Imobilidade Tônica , Locomoção/genética , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Fragmento de Restrição , Fatores de Tempo , Vocalização Animal
15.
Cytogenet Genome Res ; 109(4): 527-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15905649

RESUMO

Molecular markers such as microsatellites, provide genetic signposts for navigating genomes. In general, genetic markers that are monomorphic or non-informative in mapping populations typically remain unmapped and as such are less likely to be included in future studies. The use of hybrid cell panels and in silico mapping via whole genome sequences allow for positional mapping of non-segregating markers. This study utilizes the INRA ChickRH6 whole-genome radiation hybrid panel and chicken whole-genome shotgun sequence to map microsatellite markers from the turkey (Meleagris gallopavo). Thirty-three of the 41 markers typed on the RH panel had significant linkage to at least one other marker and 83 of 100 sequences returned significant BLAST similarities. Positioning of these markers provides additional sequence tagged sites in the turkey genome and increases the potential use of these markers for future genetic studies.


Assuntos
Marcadores Genéticos/genética , Perus/genética , Animais , Mapeamento Cromossômico/métodos
16.
Anim Genet ; 35(3): 195-200, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15147390

RESUMO

A linkage map of the Japanese quail (Coturnix japonica) genome was constructed based upon segregation analysis of 72 microsatellite loci in 433 F(2) progeny of 10 half-sib families obtained from a cross between two quail lines of different genetic origins. One line was selected for long duration of tonic immobility, a behavioural trait related to fearfulness, while the other was selected based on early egg production. Fifty-eight of the markers were resolved into 12 autosomal linkage groups and a Z chromosome-specific linkage group, while the remaining 14 markers were unlinked. The linkage groups range from 8 cM (two markers) to 206 cM (16 markers) and cover a total map distance of 576 cM with an average spacing of 10 cM between loci. Through comparative mapping with chicken (Gallus gallus) using orthologous markers, we were able to assign linkage groups CJA01, CJA02, CJA05, CJA06, CJA14 and CJA27 to chromosomes. This map, which is the first in quail based solely on microsatellites, is a major step towards the development of a quality molecular genetic map for this valuable species. It will provide an important framework for further genetic mapping and the identification of quantitative trait loci controlling egg production and fear-related behavioural traits in quail.


Assuntos
Mapeamento Cromossômico , Coturnix/genética , Repetições de Microssatélites/genética , Animais , Cruzamentos Genéticos , Ovos
17.
Anim Genet ; 35(1): 63-5, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14731233

RESUMO

We have constructed a radiation hybrid (RH) map of chicken chromosome (GGA) 15. This map can be used as a resource to efficiently map genes to this chromosome. The map has been developed using a 6000 rad chicken-hamster whole-genome radiation hybrid panel (ChickRH6). In total, six microsatellite loci, 18 sequence tagged sites (STSs) from BAC end sequences and 11 genes were typed on the panel. The initial framework map comprised eight markers, and an additional 23 markers were then added to generate the final map. The total map length was 334 centiRay6000 (cR6000). The estimated retention frequency for the data set was 18%. Using an estimated physical length of 21 Mb, the ratio between cR6000 and physical distance over GGA15 was estimated to be 0.063 Mb/cR6000. The present map increases the marker density and the marker resolution on GGA15 and enables fast mapping of new chicken genes homologous to genes from human chromosomes 12 and 22.


Assuntos
Galinhas/genética , Cromossomos/genética , Mapeamento de Híbridos Radioativos , Animais , Primers do DNA , Repetições de Microssatélites/genética , Sitios de Sequências Rotuladas
18.
Theriogenology ; 61(2-3): 573-80, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14662153

RESUMO

Mule duck hatcheries have long reported varying degrees of unbalance in the sex ratio, with a preponderance of male mules at hatching. The aim of the present study was to assess the distributions of sex ratios at various stages of development in embryos originating from intra- and intergeneric crosses between parental lineages (Muscovy male x Muscovy female, Pekin male x Pekin female, Muscovy male x Pekin female or Mule, and Pekin male x Muscovy female or Hinny). In Experiment I, embryo sexing was performed on Days 1 and 5 of incubation (by multiplex PCR) and at hatching (by vent observation). The sex ratio was not significantly modified during the early stages of embryo development whatever the genetic origin (P>0.05, Days 1 and Day 5) but our results in mule and hinny ducklings confirmed the preponderance of males among normally hatched ducklings originating from the intergeneric lineage (58.9 and 55.4% males in mules and hinnies, respectively; P<0.05 in both cases). Sex ratio (vent sexing) in second grade (cull) ducklings revealed that 68% of these ducklings were females (P<0.05). In Experiment II, the distribution of sex ratio was also performed in mule duck eggs from 6 batches (400,000 eggs/batch) first examined for fertility (candling) on Day 18 of incubation. These results indicate that the percentage of males present in the population of normally hatched ducklings increases when fertility decreases. In addition, this experiment also revealed that 83.7-90.5% of viable male mule embryos develop up to hatching, compared to only 43.0-51.0% of female mule embryos. Given that a deviation in sex ratio during the first stages of incubation is unlikely (Experiment I), it is concluded that the skewed sex ratio of mule ducks at hatching is primarily due to increased late mortality in female mule embryos occurring between egg transfer and hatching. This mortality originated, at least in part, from the intergeneric origin of female mules, and was marked to a greater or lesser extent depending on the initial success of fertilization in a given batch, a possible indication that the initial quality of gametes may selectively exert its influence at the later stages of embryo development.


Assuntos
Patos/embriologia , Razão de Masculinidade , Animais , Cruzamentos Genéticos , Patos/genética , Desenvolvimento Embrionário , Feminino , Fertilidade , Masculino , Fatores de Tempo
19.
Poult Sci ; 82(5): 721-6, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12762392

RESUMO

Selection for increased resistance to Salmonella carrier-state (defined as the persistency of the bacteria 4 wk after inoculation) could reduce the risk for the consumer of food toxi-infections. The effects of two genomic regions on chromosomes 7 and 17 harboring two genes, NRAMP1 (SLC11A1) and TLR4, known to be involved in the level of chicken infection 3 d after inoculation by Salmonella were thus tested on a total of 331 hens orally inoculated at the peak of lay with 10(9) bacteria. The animals and their parents were genotyped for a total of 10 microsatellite markers mapped on chromosomes 7 and 17. Using maximum likelihood analysis and interval mapping, it was found that the SLC11A1 region was significantly involved in the control of the probability of spleen contamination 4 wk after inoculation. Single nucleotide polymorphisms (SNP) within the SLC11A1 and TLR4 gene were tested on those animals as well as on a second batch of 279 hens whose resistance was assessed in the same conditions. As the former was significantly associated with the risk of spleen contamination and the number of contaminated organs, SLC11A1 appears to be involved in the control of resistance to Salmonella carrier state. The involvement of the TLR4 gene was also highly suspected as a significant association between SNP within the gene, and the number of contaminated organs was detected.


Assuntos
Portador Sadio/veterinária , Galinhas/genética , Predisposição Genética para Doença , Doenças das Aves Domésticas/genética , Salmonelose Animal/genética , Animais , Portador Sadio/microbiologia , Galinhas/microbiologia , Mapeamento Cromossômico/veterinária , Cromossomos/genética , Contagem de Colônia Microbiana/veterinária , Feminino , Funções Verossimilhança , Repetições de Microssatélites , Polimorfismo Genético , Doenças das Aves Domésticas/microbiologia , Salmonella , Salmonelose Animal/microbiologia , Baço/microbiologia
20.
Poult Sci ; 82(1): 54-61, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12580245

RESUMO

Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Galinhas/genética , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Proteínas Estimuladoras de Ligação a CCAAT/química , Cricetinae , Proteínas de Ligação a DNA/química , Humanos , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Polimorfismo Genético , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência , Proteína de Ligação a Elemento Regulador de Esterol 1 , Proteína de Ligação a Elemento Regulador de Esterol 2 , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...