Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7992): 545-550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030729

RESUMO

Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation1-3. However, despite recent experimental progress towards this hybridization4-15, concrete evidence for a chiral QH Josephson junction16-the elemental building block for coherent superconducting QH circuits-is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2ϕ0 magnetic flux periodicity16-19 (ϕ0 = h/2e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h/2e2 ≈ 12.9 kΩ. We observe reproducible 2ϕ0-periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface19-22. Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes23-32.

2.
Nature ; 605(7908): 51-56, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508777

RESUMO

ABSTARCT: When electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy1-5. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders6-11. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. However, confirming the existence of these ground states requires a direct visualization of their lattice-scale orders14. Here we image three distinct broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We explore the phase diagram by tuning the screening of the Coulomb interaction by a low- or high-dielectric-constant environment, and with a magnetic field. In the unscreened case, we find a Kekulé bond order, consistent with observations of an insulating state undergoing a magnetic-field driven Kosterlitz-Thouless transition15,16. Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low magnetic fields, and transits to a charge-density-wave order with partial sublattice polarization at higher magnetic fields. The Kekulé and charge-density-wave orders furthermore coexist with additional, secondary lattice-scale orders that enrich the phase diagram beyond current theory predictions6-10. This screening-induced tunability of broken-symmetry orders may prove valuable to uncover correlated phases of matter in other quantum materials.

3.
Nat Nanotechnol ; 16(5): 555-562, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633403

RESUMO

Electron interferometry with quantum Hall (QH) edge channels in semiconductor heterostructures can probe and harness the exchange statistics of anyonic excitations. However, the charging effects present in semiconductors often obscure the Aharonov-Bohm interference in QH interferometers and make advanced charge-screening strategies necessary. Here we show that high-mobility monolayer graphene constitutes an alternative material system, not affected by charging effects, for performing Fabry-Pérot QH interferometry in the integer QH regime. In devices equipped with gate-tunable quantum point contacts acting on the edge channels of the zeroth Landau level, we observe-in agreement with theory-high-visibility Aharonov-Bohm interference widely tunable through electrostatic gating or magnetic fields. A coherence length of 10 µm at a temperature of 0.02 K allows us to further achieve coherently coupled double Fabry-Pérot interferometry. In future, QH interferometry with graphene devices may enable investigations of anyonic excitations in fractional QH states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA