Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1145715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255560

RESUMO

Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.

2.
Front Plant Sci ; 14: 1136233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875565

RESUMO

Soil borne pathogens are significant contributor of plant yield loss globally. The constraints in early diagnosis, wide host range, longer persistence in soil makes their management cumbersome and difficult. Therefore, it is crucial to devise innovative and effective management strategy to combat the losses caused by soil borne diseases. The use of chemical pesticides is the mainstay of current plant disease management practices that potentially cause ecological imbalance. Nanotechnology presents a suitable alternative to overcome the challenges associated with diagnosis and management of soil-borne plant pathogens. This review explores the use of nanotechnology for the management of soil-borne diseases using a variety of strategies, such as nanoparticles acting as a protectant, as carriers of actives like pesticides, fertilizers, antimicrobials, and microbes or by promoting plant growth and development. Nanotechnology can also be used for precise and accurate detection of soil-borne pathogens for devising efficient management strategy. The unique physico-chemical properties of nanoparticles allow greater penetration and interaction with biological membrane thereby increasing its efficacy and releasability. However, the nanoscience specifically agricultural nanotechnology is still in its toddler stage and to realize its full potential, extensive field trials, utilization of pest crop host system and toxicological studies are essential to tackle the fundamental queries associated with development of commercial nano-formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA