Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759828

RESUMO

Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies.

2.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333346

RESUMO

Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights: In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.

4.
Eur J Med Chem ; 226: 113849, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560429

RESUMO

Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of hearing loss and cancer. Previously, we identified AZD5438 and AT7519-7 as potent inhibitors of CDK2, however, they also targeted additional kinases, leading to unwanted toxicities. Proteolysis Targeting Chimeras (PROTACs) are a new promising class of small molecules that can effectively direct specific proteins to proteasomal degradation. Herein we report the design, synthesis, and characterization of PROTACs of AT7519-7 and AZD5438 and the identification of PROTAC-8, an AZD5438-PROTAC, that exhibits selective, partial CDK2 degradation. Furthermore, PROTAC-8 protects against cisplatin ototoxicity and kainic acid excitotoxicity in zebrafish. Molecular dynamics simulations reveal the structural requirements for CDK2 degradation. Together, PROTAC-8 is among the first-in-class PROTACs with in vivo therapeutic activities and represents a new lead compound that can be further developed for better efficacy and selectivity for CDK2 degradation against hearing loss and cancer.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Imidazóis/farmacologia , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Perda Auditiva Provocada por Ruído/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Peixe-Zebra
5.
Hear Res ; 390: 107951, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244147

RESUMO

The retinoblastoma family of pocket proteins (pRBs), composed of Rb1, p107, and p130 are negative regulators of cell-cycle progression. The deletion of any individual pRB in the auditory system triggers hair cells' (HCs) and supporting cells' (SCs) proliferation to different extents. Nevertheless, accessing their combined role in the inner ear through conditional or complete knockout methods is limited by the early mortality of the triple knockout. In quiescent cells, hyperphosphorylation and inactivation of the pRBs are maintained through the activity of the Cyclin-D1-cdk4/6 complex. Cyclin D1 (CycD1) is expressed in the embryonic and neonatal inner ear. In the mature organ of Corti (OC), CycD1 expression is significantly downregulated, paralleling the OC mitotic quiescence. Earlier studies showed that CycD1 overexpression leads to cell-cycle reactivation in cultures of inner ear explants. Here, we characterize a Cre-activated, Doxycycline (Dox)-controlled, conditional CycD1 overexpression model, which when bred to a tetracycline-controlled transcriptional activator and the Atoh1-cre mouse lines, allow for transient CycD1 overexpression and pRBs' downregulation in the inner ear in a reversible fashion. Analyses of postnatal mice's inner ears at various time points revealed the presence of supernumerary cells throughout the length of the cochlea and in the vestibular end-organs. Notably, most supernumerary cells were observed in the inner hair cells' (IHCs) region, expressed myosin VIIa (M7a), and showed no signs of apoptosis at any of the time points analyzed. Auditory and vestibular phenotypes were similar between the different genotypes and treatment groups. The fact that no significant differences were observed in auditory and vestibular function supports the notion that the supernumerary cells detected in the adult mice cochlea and macular end-organs may not impair auditory functions.


Assuntos
Proliferação de Células , Ciclina D1/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Mitose , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclina D1/genética , Orelha Interna/citologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Camundongos Transgênicos , Miosina VIIa/metabolismo , Emissões Otoacústicas Espontâneas , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Potenciais Evocados Miogênicos Vestibulares
6.
Nat Commun ; 11(1): 63, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896743

RESUMO

Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.


Assuntos
Membrana dos Otólitos/embriologia , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Animais , Potenciais Evocados/genética , Potenciais Evocados/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/metabolismo , Membrana dos Otólitos/citologia , Membrana dos Otólitos/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Sáculo e Utrículo/citologia , Sáculo e Utrículo/embriologia , Tremor/genética , Tremor/fisiopatologia , Testes de Função Vestibular , Vestíbulo do Labirinto/embriologia , Vestíbulo do Labirinto/metabolismo
7.
Sci Rep ; 9(1): 12430, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455802

RESUMO

The cupula is a gelatinous membrane overlying the crista ampullaris of the semicircular canal, important for sensing rotation of the head and critical for normal balance. Recently the zona pellucida like domain containing 1 protein (ZPLD1, also known as cupulin) was identified in the cupula of fish. Here, we describe two new spontaneous mutations in the mouse Zpld1 gene, which were discovered by the circling behavior of mutant mice, an indicator of balance dysfunction. The Zpld1 mutant mice exhibited normal hearing function as assessed by auditory brainstem response (ABR) measurements, and their otolithic organs appeared normal. In the inner ear, Zpld1 mRNA expression was detected only in the hair cells and supporting cells of the crista ampullaris. Normal vestibular sensory evoked potential (VsEP) responses and abnormal vestibulo-ocular reflex (VOR) responses demonstrated that the vestibular dysfunction of the Zpld1 mutant mice is caused by loss of sensory input for rotary head movements (detected by cristae ampullaris) and not by loss of input for linear head translations (detected by maculae of the utricle and saccule). Taken together, these results are consistent with ZPLD1 being an important functional component of the cupula, but not tectorial or otoconial membranes.


Assuntos
Comportamento Animal , Potenciais Evocados , Sensação Gravitacional , Proteínas de Membrana/metabolismo , Mutação , Canais Semicirculares , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Canais Semicirculares/metabolismo , Canais Semicirculares/fisiopatologia
8.
Sci Rep ; 9(1): 2573, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796290

RESUMO

Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.


Assuntos
Córtex Auditivo/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Animais , Córtex Auditivo/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Canais de Potássio Ativados por Sódio/genética
9.
Front Mol Neurosci ; 11: 289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197585

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuroactive peptide that is thought to play a role at efferent synapses in hair cell organs including the cochlea, lateral line, and semicircular canal. The deletion of CGRP in transgenic mice is associated with a significant reduction in suprathreshold cochlear nerve activity and vestibulo-ocular reflex (VOR) gain efficacy when compared to littermate controls. Here we asked whether the loss of CGRP also influences otolithic end organ function and contributes to balance impairments. Immunostaining for CGRP was absent in the otolithic end organs of αCGRP null (-/-) mice while choline acetyltransferase (ChAT) immunolabeling appeared unchanged suggesting the overall gross development of efferent innervation in otolithic organs was unaltered. Otolithic function was assessed by quantifying the thresholds, suprathreshold amplitudes, and latencies of vestibular sensory-evoked potentials (VsEPs) while general balance function was assessed using a modified rotarod assay. The loss of αCGRP in null (-/-) mice was associated with: (1) shorter VsEP latencies without a concomitant change in amplitude or thresholds, and (2) deficits in the rotarod balance assay. Our findings show that CGRP loss results in faster otolith afferent activation timing, suggesting that the CGRP component of the efferent vestibular system (EVS) also plays a role in otolithic organ dynamics, which when coupled with reduced VOR gain efficacy, impairs balance.

10.
J Assoc Res Otolaryngol ; 19(4): 353-362, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687165

RESUMO

Otoconia-related vertigo and balance deficits, particularly benign paroxysmal positional vertigo (BPPV), are common. Our recent studies in humans show that, while BPPV prevalence greatly increases with age in both genders, peri-menopausal women are especially susceptible. In the present study, we show that bilateral ovariectomized (OVX) mice have significant balance behavioral deficits, and that estrogen deficiency compromises otoconia maintenance and anchoring by reducing the expression of otoconial component and anchoring proteins. There is ectopic debris formation in the ampulla under estrogen deficiency due to aberrant matrix protein expression. Furthermore, phytoestrogen is effective in rescuing the otoconia abnormalities. By comparing the expression levels of known estrogen receptor (Esr) subtypes, and by examining the otoconia phenotypes of null mice for selected receptors, we postulate that Esr2 may be critical in mediating the effects of estrogen in otoconia maintenance.


Assuntos
Estrogênios/deficiência , Membrana dos Otólitos/fisiologia , Animais , Vertigem Posicional Paroxística Benigna/etiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Membrana dos Otólitos/química , Membrana dos Otólitos/efeitos dos fármacos , Ovariectomia , Fitoestrógenos/farmacologia , Equilíbrio Postural , Receptores de Estrogênio/análise
11.
PLoS Biol ; 16(3): e2002988, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29534062

RESUMO

How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.


Assuntos
Lateralidade Funcional , Doenças do Labirinto/complicações , Atividade Motora/fisiologia , Animais , Comportamento Animal , Humanos , Camundongos , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/fisiologia , Vestíbulo do Labirinto/fisiopatologia
12.
J Cell Biol ; 216(11): 3861-3881, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28899994

RESUMO

Control of the dimensions of actin-rich processes like filopodia, lamellipodia, microvilli, and stereocilia requires the coordinated activity of many proteins. Each of these actin structures relies on heterodimeric capping protein (CAPZ), which blocks actin polymerization at barbed ends. Because dimension control of the inner ear's stereocilia is particularly precise, we studied the CAPZB subunit in hair cells. CAPZB, present at ∼100 copies per stereocilium, concentrated at stereocilia tips as hair cell development progressed, similar to the CAPZB-interacting protein TWF2. We deleted Capzb specifically in hair cells using Atoh1-Cre, which eliminated auditory and vestibular function. Capzb-null stereocilia initially developed normally but later shortened and disappeared; surprisingly, stereocilia width decreased concomitantly with length. CAPZB2 expressed by in utero electroporation prevented normal elongation of vestibular stereocilia and irregularly widened them. Together, these results suggest that capping protein participates in stereocilia widening by preventing newly elongating actin filaments from depolymerizing.


Assuntos
Proteína de Capeamento de Actina CapZ/metabolismo , Células Ciliadas Auditivas/metabolismo , Animais , Limiar Auditivo , Comportamento Animal , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Proteína de Capeamento de Actina CapZ/deficiência , Proteína de Capeamento de Actina CapZ/genética , Embrião de Galinha , Cílios/metabolismo , Cílios/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células Ciliadas Auditivas/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Emissões Otoacústicas Espontâneas , Fenótipo , Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/fisiopatologia
13.
Hum Mol Genet ; 26(18): 3482-3494, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633508

RESUMO

Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Síndromes de Usher/terapia , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Potenciais Evocados Auditivos , Audição/genética , Camundongos , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Retina/metabolismo , Degeneração Retiniana/genética , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Potenciais Evocados Miogênicos Vestibulares/genética , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/fisiologia
14.
J Neurosci ; 37(20): 5144-5154, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438970

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) and anxiety-related disorders occur at rates 2-3 times higher in deaf compared with hearing children. Potential explanations for these elevated rates and the heterogeneity of behavioral disorders associated with deafness have usually focused on socio-environmental rather than biological effects. Children with the 22q11.2 deletion or duplication syndromes often display hearing loss and behavioral disorders, including ADHD and anxiety-related disorders. Here, we show that mouse mutants with either a gain or loss of function of the T-Box transcription factor gene, Tbx1, which lies within the 22q11.2 region and is responsible for most of the syndromic defects, exhibit inner ear defects and hyperactivity. Furthermore, we show that (1) inner ear dysfunction due to the tissue-specific loss of Tbx1 or Slc12a2, which encodes a sodium-potassium-chloride cotransporter and is also necessary for inner ear function, causes hyperactivity; (2) vestibular rather than auditory failure causes hyperactivity; and (3) the severity rather than the age of onset of vestibular dysfunction differentiates whether hyperactivity or anxiety co-occurs with inner ear dysfunction. Together, these findings highlight a biological link between inner ear dysfunction and behavioral disorders and how sensory abnormalities can contribute to the etiology of disorders traditionally considered of cerebral origin.SIGNIFICANCE STATEMENT This study examines the biological rather than socio-environmental reasons why hyperactivity and anxiety disorders occur at higher rates in deaf individuals. Using conditional genetic approaches in mice, the authors show that (1) inner ear dysfunction due to either Tbx1 or Slc12a2 mutations cause hyperactivity; (2) it is vestibular dysfunction, which frequently co-occurs with deafness but often remains undiagnosed, rather than auditory dysfunction that causes hyperactivity and anxiety-related symptoms; and (3) the severity of vestibular dysfunction can predict whether hyperactivity or anxiety coexist with inner ear dysfunction. These findings suggest a need to evaluate vestibular function in hearing impaired individuals, especially those who exhibit hyperactive and anxiety-related symptoms.


Assuntos
Ansiedade/complicações , Ansiedade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Comportamento Animal , Surdez/fisiopatologia , Doenças Vestibulares/fisiopatologia , Animais , Ansiedade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Surdez/complicações , Surdez/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Índice de Gravidade de Doença , Doenças Vestibulares/complicações , Doenças Vestibulares/patologia
15.
Mol Ther ; 25(3): 780-791, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254438

RESUMO

Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing.


Assuntos
Terapia Genética , Audição/genética , Equilíbrio Postural/genética , Síndromes de Usher/genética , Síndromes de Usher/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Expressão Gênica , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestrutura , Testes Auditivos , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fenótipo , Estereocílios/metabolismo , Estereocílios/ultraestrutura , Síndromes de Usher/terapia
16.
Sci Rep ; 7: 42079, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181545

RESUMO

Studies of developmental and functional biology largely rely on conditional expression of genes in a cell type-specific manner. Therefore, the importance of specificity and lack of inherent phenotypes for Cre-driver animals cannot be overemphasized. The Gfi1Cre mouse is commonly used for conditional hair cell-specific gene deletion/reporter gene activation in the inner ear. Here, using immunofluorescence and flow cytometry, we show that the Gfi1Cre mice produce a pattern of recombination that is not strictly limited to hair cells within the inner ear. We observe a broad expression of Cre recombinase in the Gfi1Cre mouse neonatal inner ear, primarily in inner ear resident macrophages, which outnumber the hair cells. We further show that heterozygous Gfi1Cre mice exhibit an early onset progressive hearing loss as compared with their wild-type littermates. Importantly, vestibular function remains intact in heterozygotes up to 10 months, the latest time point tested. Finally, we detect minor, but statistically significant, changes in expression of hair cell-enriched transcripts in the Gfi1Cre heterozygous mice cochleae compared with their wild-type littermate controls. Given the broad use of the Gfi1Cre mice, both for gene deletion and reporter gene activation, these data are significant and necessary for proper planning and interpretation of experiments.


Assuntos
Proteínas de Ligação a DNA/genética , Orelha Interna/patologia , Perda Auditiva/genética , Perda Auditiva/patologia , Integrases/genética , Recombinação Genética , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Imunofluorescência , Integrases/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
17.
J Comp Neurol ; 525(5): 1216-1233, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718229

RESUMO

Little is known about the function of the cholinergic efferents innervating peripheral vestibular hair cells. We measured vestibular sensory evoked potentials (VsEPs) in α9 knockout (KO) mice, α10 KO mice, α7 KO mice, α9/10 and α7/9 double KO mice, and wild-type (WT) controls. We also studied the morphology and ultrastructure of efferent terminals on vestibular hair cells in α9, α10, and α9/10 KOs. Both type I and type ll vestibular hair cells express the α9 and α10 subunits. The efferent boutons on vestibular cells in α9, α10, and α9/10 KOs appeared normal, but a quantitative analysis was not performed. Mean VsEP thresholds were significantly elevated in α9 and α9/10 KO animals. Some α9 and α9/10 KO animals, however, had normal or near-normal thresholds, whereas others were greatly affected. Despite individual variability in threshold responses, latencies were consistently shortened. The double α7/9 KO resulted in decreased variance by normalizing waveforms and latencies. The phenotypes of the α7 and α10 single KOs were identical. Both α7 and α10 KO mice evidenced normal thresholds, decreased activation latencies, and larger amplitudes compared with WT mice. The data suggest a complex interaction of nicotinic acetylcholine receptors (nAChRs) in regulating vestibular afferent gain and activation timing. Although the α9/10 heteromeric nAChR is an important component of vestibular efferent activity, other peripheral or central nAChRs involving the α7 subunit or α10 subunit and α9 homomeric receptors are also important. J. Comp. Neurol. 525:1216-1233, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Células Ciliadas Vestibulares/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Imunofluorescência , Camundongos , Camundongos Knockout , Microscopia Confocal
18.
J Cell Biol ; 215(4): 467-482, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27811163

RESUMO

With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin filaments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.


Assuntos
Citoesqueleto de Actina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Estereocílios/metabolismo , Animais , Proteínas de Transporte/genética , Reagentes de Ligações Cruzadas/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Mutação/genética , Proteômica , Sáculo e Utrículo/metabolismo , Sáculo e Utrículo/fisiopatologia , Sáculo e Utrículo/ultraestrutura , Estereocílios/ultraestrutura , Regulação para Cima
19.
Neurobiol Aging ; 43: 13-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255811

RESUMO

The C57BL/6J (B6) mouse strain carries a cadherin 23 mutation (Cdh23(753A), also known as Ahl), which affects inner ear structures and results in age-related hearing loss. The B6.CAST strain harbors the wild type Cdh23 gene, and hence, the influence of Ahl is absent. The purpose of the present study was to characterize the effect of age and gender on gravity receptor function in B6 and B6.CAST strains and to compare functional aging between auditory and vestibular modalities. Auditory sensitivity declined at significantly faster rates than gravity receptor sensitivity for both strains. Indeed, vestibular functional aging was minimal for both strains. The comparatively smaller loss of macular versus cochlear sensitivity in both the B6 and B6.CAST strains suggests that the contribution of Ahl to the aging of the vestibular system is minimal, and thus very different than its influence on aging of the auditory system. Alternatively, there exist unidentified genes or gene modifiers that serve to slow the degeneration of gravity receptor structures and maintain gravity receptor sensitivity into advanced age.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Caderinas/fisiologia , Sensação Gravitacional/genética , Sensação Gravitacional/fisiologia , Audição/genética , Audição/fisiologia , Vestíbulo do Labirinto/fisiologia , Envelhecimento/patologia , Animais , Cóclea/patologia , Cóclea/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mutação , Caracteres Sexuais , Vestíbulo do Labirinto/patologia
20.
Sci Rep ; 6: 27221, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251877

RESUMO

The phospholipid- and Ca(2+)-binding protein annexin A5 (ANXA5) is the most abundant membrane-associated protein of ~P23 mouse vestibular hair bundles, the inner ear's sensory organelle. Using quantitative mass spectrometry, we estimated that ANXA5 accounts for ~15,000 copies per stereocilium, or ~2% of the total protein there. Although seven other annexin genes are expressed in mouse utricles, mass spectrometry showed that none were present at levels near ANXA5 in bundles and none were upregulated in stereocilia of Anxa5(-/-) mice. Annexins have been proposed to mediate Ca(2+)-dependent repair of membrane lesions, which could be part of the repair mechanism in hair cells after noise damage. Nevertheless, mature Anxa5(-/-) mice not only have normal hearing and balance function, but following noise exposure, they are identical to wild-type mice in their temporary or permanent changes in hearing sensitivity. We suggest that despite the unusually high levels of ANXA5 in bundles, it does not play a role in the bundle's key function, mechanotransduction, at least until after two months of age in the cochlea and six months of age in the vestibular system. These results reinforce the lack of correlation between abundance of a protein in a specific compartment or cellular structure and its functional significance.


Assuntos
Anexina A5/genética , Células Ciliadas Auditivas/fisiologia , Estereocílios/metabolismo , Vestíbulo do Labirinto/crescimento & desenvolvimento , Animais , Anexina A5/metabolismo , Cálcio/metabolismo , Potenciais Evocados Auditivos , Feminino , Técnicas de Inativação de Genes , Masculino , Espectrometria de Massas , Mecanotransdução Celular , Camundongos , Vestíbulo do Labirinto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...