Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mol Cell Biol ; 11(3): 231-244, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689920

RESUMO

The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
J Pathol ; 241(5): 661-670, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097652

RESUMO

Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here that the MDM4 protein is frequently abundant in the context of mutant p53 in basal-like BC samples. Importantly, we show that MDM4 plays a critical role in the proliferation of these BC cells. We demonstrate that conditional knockdown (KD) of MDM4 provokes growth inhibition across a range of BC subtypes with mutant p53, including luminal, Her2+ and triple-negative BCs. In vivo, MDM4 was shown to be crucial for the establishment and progression of tumours. This growth inhibition was mediated, at least in part, by the cell cycle inhibitor p27. Depletion of p27 together with MDM4 KD led to recovery of the proliferative capacity of cells that were growth-inhibited by MDM4 KD alone. Consistently, we identified low levels of p27 expression in basal-like tumours corresponding to high levels of MDM4 and p53. This predicts a signature for a subset of tumours that may be amenable to therapies targeted towards MDM4 and mutant p53. The therapeutic potential of MDM4 as a target in BC with mutant p53 was shown in vitro by use of a small-molecule inhibitor. Overall, our study supports MDM4 as a novel therapeutic target for BC expressing mutant p53. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Antracenos/farmacologia , Carcinogênese/genética , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Tioureia/análogos & derivados , Tioureia/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo
4.
J Mol Cell Biol ; 9(1): 53-61, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096293

RESUMO

The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Morfogênese , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
5.
J Mol Model ; 21(12): 310, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26564147

RESUMO

Antigen85 (Ag85) proteins of Mycobacterium tuberculosis are mycolyl transferases that aid in cell wall biosynthesis. MPT51 (Ag85D) is closely related to Ag85 proteins. We have performed a comparative molecular dynamics (MD) simulation study of Ag85 proteins (Ag85A, Ag85B, and Ag85C) and MPT51. We observe that helix α5, ß7-α9 loop, and N-terminal region of helix α9 of Ag85 proteins are mobile, suggestive of lid like movement over the active site. Further, in Ag85B, we observe the proposed scooting mode of the hydrophobic gating residue Phe232. Our simulations also show a similar scooting mode for Phe232 of Ag85A and Trp158 of Ag85C. We also found aromatic residue clusters at the ends of the hydrophobic channel of Ag85 proteins, which may have functional significance. Although MPT51 lacks the tunnel, it has the aromatic clusters. The aromatic cluster region has the ability to bind trehalose. From an immunoinformatics study, a promiscuous linear epitope was identified in MPT51 which could be useful in subunit vaccine studies. Recent studies have shown that a mycobacterial protein HupB, interacts with Ag85 proteins and has a regulatory role in cell wall biogenesis, with implications in growth rate and latency. We performed molecular docking studies of HupB protein with Ag85 proteins and predicted potential sites of interaction in Ag85 proteins. The insights gained through the current study can potentially pave way for newer therapeutic interventions. Graphical Abstract Dynamics of antigen85 proteins and MPT51 from Mycobacterium tuberculosis.


Assuntos
Aciltransferases/química , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Aciltransferases/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo , Conformação Proteica
6.
Front Oncol ; 5: 284, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734569

RESUMO

For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...