Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(14): e2104452, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289120

RESUMO

SPHK1 (sphingosine kinase-1) catalyzes the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P), is found to be highly expressed in solid tumors. Here, extracellular vesicles (EVs) are identified as the key transporters of SPHK1 to the tumor microenvironment. Consequently, SPHK1-packaged EVs elevate S1P levels in the tumor microenvironment, where S1P appears as an immunosuppressive agent. However, the exact mechanism of how S1P mediates its immunosuppressive effects in cancer is not understood. It is investigated that S1P can induce T cell exhaustion. S1P can also upregulate programmed death ligand-1 (PDL-1) expression through E2F1-mediated transcription. Notably, an SPHK1 inhibitor PF543 improves T cell-mediated cytotoxicity. Furthermore, combining PF543 with an anti-PD-1 antibody reduces tumor burden and metastasis more effectively than PF543 alone in vivo. These data demonstrate a previously unrecognized mechanism of how SPHK1-packaged EVs contribute to the progression of ovarian cancer and thus present the potential clinical application of inhibiting SPHK1/S1P signaling to improve immune checkpoint blockage (anti-PD-1 antibody) therapy in ovarian cancer.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Imunoterapia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/uso terapêutico , Esfingosina/metabolismo , Esfingosina/uso terapêutico , Linfócitos T/metabolismo , Linfócitos T/patologia , Microambiente Tumoral
2.
Chemistry ; 26(5): 1037-1041, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31749263

RESUMO

High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.


Assuntos
Dendrímeros/metabolismo , Escherichia coli/metabolismo , Galactose/química , Nanoestruturas/química , Aglutinação/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Humanos , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Nanoestruturas/toxicidade , Prata/química
3.
Pharmacol Res ; 147: 104342, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288079

RESUMO

Human glutaminyl cyclase (hQC) is an important enzyme for post-translational modification by converting the N-terminal glutaminyl and glutamyl into pyroglutamate (pGlu) through cyclization. The two isoforms of hQC, secretory glutaminyl cyclase (sQC) and golgi resident glutaminyl cyclase (gQC), are involved in various pathological conditions especially in Alzheimer's disease (AD). The sQC is known to mediate the formation of pyroglutamate containing amyloid beta (pGlu-Aß) peptides while gQC mediates the maturation of C-C motif chemokine ligand 2 (CCL2). Therefore, hQC (both sQC and gQC) inhibition is considered to be an attractive strategy to prevent the formation of pGlu-Aß and to reduce neuroinflammation and hence provides a new opportunity for the treatment of AD. In this review, we summarize our current understanding on the structure, function and inhibitors of hQC and its involvement in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Aminoaciltransferases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Humanos , Fármacos Neuroprotetores/uso terapêutico , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA