Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 355: 114128, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662609

RESUMO

Cerebral ischemic stroke is a leading cause of mortality and disability worldwide. Currently, there are a lack of drugs capable of reducing neuronal cell loss due to ischemia/reperfusion-injury after stroke. Previously, we identified mitoNEET, a [2Fe-2S] redox mitochondrial protein, as a putative drug target for ischemic stroke. In this study, we tested NL-1, a novel mitoNEET ligand, in a preclinical model of ischemic stroke with reperfusion using aged female rats. Using a transient middle cerebral artery occlusion (tMCAO), we induced a 2 h ischemic injury and then evaluated the effects of NL-1 treatment on ischemic/reperfusion brain injury at 24 and 72 h. Test compounds were administered at time of reperfusion via intravenous dosing. Results of the study demonstrated that NL-1 (10 mg/kg) treatment markedly improved survival and reduced infarct volume and hemispheric swelling in the brain as compared aged rats treated with vehicle or a lower dose of NL-1 (0.25 mg/kg). Interestingly, the protective effect of NL-1 was significantly improved when encapsulated in PLGA nanoparticles, where a 40-fold lesser dose (0.25 mg/kg) of NL-1 produced an equivalent effect as the 10 mg/kg dose. Evaluation of changes in blood-brain barrier permeability and lipid peroxidation corroborated the protective actions of NL-1 (10 mg/kg) or NL-1 NP treatment demonstrated a reduced accumulation of parenchymal IgG, decreased levels of 4-hydroxynonenal (4-HNE) and a decreased TUNEL positive cells in the brains of aged female rats at 72 h after tMCAO with reperfusion. Our studies indicate that targeting mitoNEET following ischemia/reperfusion-injury is a novel drug target pathway that warrants further investigation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Feminino , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ligantes , Proteínas Mitocondriais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Resultado do Tratamento
2.
Prog Neurobiol ; 199: 101937, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33383106

RESUMO

Maintenance of the endothelial blood-brain-barrier (BBB) through Wnt/ß-catenin signalling is essential for neuronal function. The cells however, providing Wnt growth factors at the adult neurovascular unit (NVU) are poorly explored. Here we show by conditionally knocking out the evenness interrupted (Evi) gene in astrocytes (EviΔAC) that astrocytic Wnt release is crucial for BBB and NVU integrity. EviΔAC mice developed brain oedema and increased vascular tracer leakage. While brain vascularization and endothelial junctions were not altered in 10 and 40 week-old mice, endothelial caveolin(Cav)-1-mediated vesicle formation was increased in vivo and in vitro. Moreover, astrocytic end-feet were swollen, and aquaporin-4 distribution was disturbed, coinciding with decreased astrocytic Wnt activity. Vascular permeability correlated with increased neuronal activation by c-fos staining, indicative of altered neuronal function. Astrocyte-derived Wnts thus serve to maintain Wnt/ß-catenin activity in endothelia and in astrocytes, thereby controlling Cav-1 expression, vesicular abundance, and end-feet integrity at the NVU.


Assuntos
Astrócitos , Barreira Hematoencefálica , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Camundongos , Proteínas Wnt , beta Catenina/metabolismo
3.
Front Neuroanat ; 11: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184486

RESUMO

The dentate gyrus (DG) is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ). We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX) and a marker for mature neurons, calbindin (CB). Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs) during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL), indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4-6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...