Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31817-31825, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38848259

RESUMO

We have designed and synthesized a helical cysteamine-terminated oligourea foldamer composed of ten urea residues featuring side carboxyl and amine groups. The carboxyl group is located in proximity to the C-terminus of the oligourea and hence at the negative pole of the helix dipole. The amine group is located close to the N-terminus and hence at the positive pole of the helix dipole. Beyond the already remarkable dipole moment inherent in oligourea 2.5 helices, the incorporation of additional charges originating from the carboxylic and amine groups is supposed to impact the overall charge distribution along the molecule. These molecules were self-assembled into monolayers on a gold substrate, allowing us to investigate the influence of an electric field on these polar helices. By applying surface-enhanced infrared reflection-absorption spectroscopy, we proved that molecules within the monolayers tend to reorient themselves more vertically when a negative bias is applied to the surface. It was also found that surface-confined oligourea molecules affected by the external electric field tend to rearrange the electron density at urea groups, leading to the stabilization of the resonance structure with charge transfer character. The presence of the external electric field also affected the nanomechanical properties of the oligourea films, suggesting that molecules also tend to reorient in the ambient environment without an electrolyte solution. Under the same conditions, the helical oligourea displayed a robust piezoresponse, particularly noteworthy given the slender thickness of the monolayer, which measured approximately 1.2 nm. This observation demonstrates that thin molecular films composed of oligoureas may exhibit stimulus-responsive properties. This, in turn, may be used in nanotechnology systems as actuators or functional films, enabling precise control of their thickness in the range of even fractions of nanometers.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049298

RESUMO

Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d33 coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators.

3.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233944

RESUMO

Alternative sintering technologies promise to overcome issues associated with conventional ceramic sintering such as high thermal budgets and CO2 footprint. The sintering process becomes even more relevant for alkali-based piezoelectric ceramics such as K0.5Na0.5NbO3 (KNN) typically fired above 1100 °C for several hours that induces secondary phase formation and, thereby, degrades their electrical characteristics. Here, an ability of KNN ceramics to be of high performance is successfully demonstrated, using an electric field- and current-assisted Flash sintering technique at 900 °C only. Reported for the first time, Flash sintered KNN ceramics have room-temperature remnant polarization Pr = 21 µC/cm2 and longitudinal piezoelectric coefficient d33 = 117 pC/N, slightly superior to that of conventional ones due to the reduced content of secondary phases. High-performance KNN ceramics Flash sintered at a low-thermal budget have implications for the development of innovative low carbon technologies, electroceramics stakeholders, and piezoelectric energy harvesters.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234546

RESUMO

The request for extremely low-temperature and short-time sintering techniques has guided the development of alternative ceramic processing. Atmosphere-assisted FLASH sintering (AAFS) combines the direct use of electric power to packed powders with the engineering of operating atmosphere to allow low-temperature conduction. The AAFS of nanometric Potassium Sodium Niobate, K0.5Na0.5NbO3, a lead-free piezoelectric, is of great interest to electronics technology to produce efficient, low-thermal-budget sensors, actuators and piezo harvesters, among others. Not previously studied, the role of different atmospheres for the decrease in FLASH temperature (TF) of KNN is presented in this work. Additionally, the effect of the humidity presence on the operating atmosphere and the role of the compact morphology undergoing FLASH are investigated. While the low partial pressure of oxygen (reducing atmospheres) allows the decrease of TF, limited densification is observed. It is shown that AAFS is responsible for a dramatic decrease in the operating temperature (T < 320 °C), while water is essential to allow appreciable densification. In addition, the particles/pores morphology on the green compact impacts the uniformity of AAFS densification.

5.
Materials (Basel) ; 15(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160804

RESUMO

The voltage dependence of the dielectric permittivity ε' and the low dielectric loss tanδ of incipient ferroelectrics have drawn vast attention to the use of these materials for the development of tuning elements in electronics and telecommunications. Here, we study the DC electric field dependence of low-temperature ε' in ~320 nm thick sol-gel-derived SrTi1-xZnxO3-δ thin films with x = 0.01 and 0.05, deposited on Pt/TiO2/SiO2/Si substrates. Incorporation of Zn onto Ti sites is found to decrease ε' compared to undoped SrTiO3 films, while increasing the relative tunability nr up to ~32.9% under a DC electric field of 125 kV/cm at low temperatures. The hysteresis-free variation in ε' with electric field and tanδ values below 0.6% observed for SrTi1-xZnxO3-δ film with x = 0.01 make this compound more attractive for tunable device applications.

6.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057184

RESUMO

The vital role of high-quality-factor (Q) high-frequency (f) dielectric resonators in the growing microwave telecommunication, satellite broadcasting and intelligent transport systems has long motivated the search for new, small size, and lightweight integrated components and packages, prepared by low cost and sustainable processes. One approach is replacing the currently used bulk ceramic dielectrics by thick films of low-sintering-temperature dielectrics fabricated by affordable processes. Here we demonstrate the fabrication of high-Q TiTe3O8 thick films directly on low loss Al2O3 substrates by electrophoretic deposition using sacrificial carbon layer. Nineteen-micrometre-thick TiTe3O8 films on Al2O3 sintered at 700 °C are found to have a relative permittivity εr of 32 and Q × f > 21,000 GHz. Being thus able to measure and provide for the first time the microwave dielectric properties of these films, our results suggest that TiTe3O8 films on Al2O3 substrates are suitable for microlayer microstrip array applications.

7.
Acta Biomater ; 139: 249-258, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34111519

RESUMO

Stimuli responsive materials are found in a broad range of applications, from energy harvesters to biomolecular sensors. Here, we report the production of poly (L-lactic acid) (PLLA) thin films that exhibit a mechanical stress responsive behaviour. By simply applying a mechanical stress through an AFM tip, a local electrical polarization was generated and measured by Kelvin Probe Force Microscopy. We showed that the magnitude of the stress generated electrical polarization can be manipulated by varying the thickness or crystallization state of the PLLA thin films. Besides exhibiting a mechanical stress-response behaviour with potential for energy harvesting and sensor applications, we show by AFM that these platforms react to mechanical forces with physiological relevance: interaction forces as low as a cell sheet migrating over a substrate or larger ones as the fluid induced stresses in bone tissue. In living tissues, as most mechanical stimuli are transduced as strain gradients for the anatomical structures, these mechanically responsive substrates can be used as ex vivo platforms to study the protein and cells response over a large range of electrical stimuli amplitude. As a proof of concept, selective adsorption of a human fibronectin was demonstrated by local patterning of the stimuli responsive PLLA films. STATEMENT OF SIGNIFICANCE: Bioelectricity is inherent to the formation and repair of living tissues and electrical stimulation has been recognized for promoting regeneration. Given the proven beneficial effects of electric fields and the absence of a suitable method of stimulation, there is a clinical need for smart substrates, which can generate a polarization (charges) to promote tissue regeneration without the need of external devices. In this work, we report the fabrication of poly(L-lactic) acid platforms that exhibit a mechanical stress responsive behaviour when subjected to physiologically relevant forces. This behaviour can be tailored by varying the thickness or crystallization state of the PLLA films. We further demonstrate the biofunctionality of such platforms by exploiting the mechanically-induced charge for adhesion protein adsorption.


Assuntos
Poliésteres , Polímeros , Eletricidade , Humanos , Fenômenos Mecânicos , Microscopia de Força Atômica , Poliésteres/química , Polímeros/química , Redação
8.
Materials (Basel) ; 14(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771941

RESUMO

Strontium titanate-based materials with ferroelectric or relaxor-like properties have drawn vast attention as polar dielectrics for electronics and telecommunications. Here, we study the lattice dynamics in sol-gel-derived Sr1-1.5xBixTiO3 thin films with x = 0.0053 and 0.167, deposited on Al2O3 substrates, using a variable-temperature far-infrared spectroscopy in a transmittance mode. Bi doping, known to induce a low-frequency dielectric relaxation in SrTiO3 (ST) ceramics and films, due to off-centre dopant ion displacements generating electric dipoles, is shown to affect the polar phonon behaviour of thin films. We show that in weakly Bi-doped films, the low-frequency polar TO1 mode softens on cooling but less than in undoped ST. In heavily Bi-doped ST films, this mode displays no significant frequency variation with temperature from 300 to 10 K. The polar phonon behaviour of polycrystalline Bi-doped ST thin films is comparable with that of Bi-doped ST ceramics, which exhibit dielectric relaxations and harden soft-mode behaviour instead of the ferroelectric phase transition.

9.
Materials (Basel) ; 14(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443152

RESUMO

Alkaline niobate and tantalate perovskites have attracted attention as polar dielectrics for electronics and telecommunications. Here, we studied the polar behaviour, lattice dynamics, and local structure in conventionally processed K0.985Mn0.015TaO3±Î´ ceramics using a combination of variable-temperature dielectric and Raman spectroscopies, and X-ray absorption fine structure (XAFS) measurements, respectively. Mn doping induces a low-frequency dielectric relaxation in KTaO3 (KT), which follows the Arrhenius law with an activation energy U ≈ 105 meV and the characteristic relaxation time τ0 ≈ 4.6 × 10-14 s. Our XAFS results support preferential Mn occupancy of the cuboctahedral sites as Mn2+, with these cations strongly off-centred in the oversized oxygen cages. Such disordered Mn displacements generate electric dipoles, which are proposed as the source of the observed dielectric relaxation. We show that in Mn-doped ceramics, the low-frequency polar TO1 mode softens on cooling and, at low temperatures, exhibits a higher frequency than in undoped KT. This mode displays no detectable splitting, which contrasts with Li-doped KT that also contains off-centred Li+ species on the cuboctahedral sites. Therefore, we conclude that the coupling between the Mn displacements and the lattice is weaker than in the Li case, and Mn-doped KT therefore exhibits a dielectric relaxation but no ferroelectric transition.

10.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299274

RESUMO

Bone injuries represent a major social and financial impairment, commonly requiring surgical intervention due to a limited healing capacity of the tissue, particularly regarding critical-sized defects and non-union fractures. Regenerative medicine with the application of bone implants has been developing in the past decades towards the manufacturing of appropriate devices. This work intended to evaluate medical 316L stainless steel (SS)-based devices covered by a polymer poly (L-lactic acid) (PLLA) coating for bone lesion mechanical and functional support. SS316L devices were subjected to a previously described silanization process, following a three-layer PLLA film coating. Devices were further characterized and evaluated towards their cytocompatibility and osteogenic potential using human dental pulp stem cells, and biocompatibility via subcutaneous implantation in a rat animal model. Results demonstrated PLLA-SS316L devices to present superior in vitro and in vivo outcomes and suggested the PLLA coating to provide osteo-inductive properties to the device. Overall, this work represents a preliminary study on PLLA-SS316L devices' potential towards bone tissue regenerative techniques, showing promising outcomes for bone lesion support.


Assuntos
Regeneração Óssea , Polpa Dentária/citologia , Osteoblastos/citologia , Poliésteres/química , Aço Inoxidável/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Técnicas In Vitro , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia
11.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803462

RESUMO

The considerable decrease in temperature and time makes FLASH sintering a more sustainable alternative for materials processing. FLASH also becomes relevant if volatile elements are part of the material to be processed, as in alkali-based piezoelectrics like the promising lead-free K0.5Na0.5NbO3 (KNN). Due to the volatile nature of K and Na, KNN is difficult to process by conventional sintering. Although some studies have been undertaken, much remains to be understood to properly engineer the FLASH sintering process of KNN. In this work, the effect of FLASH temperature, TF, is studied as a function of the particle size and impurity content of KNN powders. Differences are demonstrated: while the particle size and impurity degree markedly influence TF, they do not significantly affect the densification and grain growth processes. The conductivity of KNN FLASH-sintered ceramics and KNN single crystals (SCs) is compared to elucidate the role of particles' surface conduction. When particles' surfaces are not present, as in the case of SCs, the FLASH process requires higher temperatures and conductivity values. These results have implications in understanding FLASH sintering towards a more sustainable processing of lead-free piezoelectrics.

12.
Phys Chem Chem Phys ; 22(16): 8572-8584, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255108

RESUMO

ZnO/ZnO2 composites grown by hydrothermal synthesis at low temperature (180 °C) and thermally annealed at 300 °C were fully analysed by morphological, structural and optical techniques. X-ray diffraction patterns (XRD) and Raman spectroscopy clearly evidence the presence of both crystalline phases in the ZnO/ZnO2 sample. The differential scanning calorimetry analysis and thermogravimetric profiles indicate an exothermic event with a peak temperature ca. 225 °C, which is accompanied by a 8.5% weight loss, being attributed to the crystallization of ZnO from ZnO2. Upon a thermal annealing treatment at 300 °C the ZnO2 phase was completely converted into ZnO, as measured by XRD and Raman spectroscopy. Photoluminescence investigations reveal that the emission is dominated by a broad band recombination in both samples, due to the overlapping of different emitting centres, and that the peak position of the PL emission is dependent on the excitation density. The ZnO/ZnO2 sample exhibits a widening of the bandgap when compared to the one only containing ZnO, likely related to the presence of the additional ZnO2 phase and suggesting a bandgap energy of ~3.42 eV for this compound. Surface analysis revealed that the sample exhibits a surface area of 90 m2 g-1, which decreases to 30 m2 g-1 after the thermal annealing and the full conversion into ZnO. This difference in the surface area showed particular relevance in the stability of the measured optical properties. Particularly, the intensity of the photoluminescence signal was seen to be higher in the ZnO/ZnO2 sample and strongly dependent on the measurement atmosphere, highlighting its potential to be employed in the fabrication of optical-based sensing systems for environmental applications, namely in gas sensors.

13.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718013

RESUMO

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films' performance using low-cost scalable processing conditions. Here, sol-gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500-600 nm and (Na + K)/Nb ratio of 1.07-1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.

14.
Magn Reson Chem ; 57(11): 919-933, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31058384

RESUMO

Untargeted nuclear magnetic resonance (NMR) metabolomics was employed, for the first time to our knowledge, to characterize the metabolome of human osteoblast (HOb) cells and extracts in the presence of non-poled or negatively poled poly-L-lactic acid (PLLA). The metabolic response of these cells to this polymer, extensively used in bone regeneration strategies, may potentially translate into useful markers indicative of in vivo biomaterial performance. We present preliminary results of multivariate and univariate analysis of NMR spectra, which have shown the complementarity of lysed cells and extracts in terms of information on cell metabolome, and unveil that, irrespective of poling state, PLLA-grown cells seem to experience enhanced oxidative stress and activated energy metabolism, at the cost of storage lipids and glucose. Possible changes in protein and nucleic acid metabolisms were also suggested, as well as enhanced membrane biosynthesis. Therefore, the presence of PLLA seems to trigger cell catabolism and anti-oxidative protective mechanisms in HOb cells, while directing them towards cellular growth. This was not sufficient, however, to lead to a visible cell proliferation enhancement in the presence of PLLA, although a qualitative tendency for negatively poled PLLA to be more effective in sustaining cell growth than non-poled PLLA was suggested. These preliminary results indicate the potential of NMR metabolomics in enlightening cell metabolism in response to biomaterials and their properties, justifying further studies of the fine effects of poled PLLA on these and other cells of significance in tissue regeneration strategies.


Assuntos
Metabolômica , Osteoblastos/metabolismo , Poliésteres/metabolismo , Proliferação de Células , Humanos , Espectroscopia de Ressonância Magnética , Osteoblastos/citologia , Poliésteres/química
15.
Colloids Surf B Biointerfaces ; 167: 93-103, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627682

RESUMO

Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10-10C cm-2 that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 µm) over non-poled aligned nanofibers, and by 50% (+100 µm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications.


Assuntos
Nanofibras/química , Tecido Nervoso/citologia , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas Eletroquímicas , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Tecido Nervoso/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Ratos Wistar
16.
Phys Chem Chem Phys ; 19(22): 14337-14344, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537635

RESUMO

BiFeO3 (BFO) thin films were grown by chemical solution deposition on a range of electrodes to determine their role in controlling the phase formation and microstructure of the films. The crystallization on oxide electrodes followed the sequence: amorphous → Bi2O2(CO3) → perovskite, while those on Pt crystallized directly from the amorphous phase. IrO2 electrodes promoted perovskite phase formation at the lowest temperature and LaNiO3 additionally induced local epitaxial growth. All compositions exhibited fully coherent Fe-rich precipitates within the grain interior of the perovskite matrix, whereas the incoherent Bi2Fe4O9 second phase was also observed at the grain boundaries of BFO grown on Pt electrodes. The latter could be observed by X-ray diffraction as well as transmission electron microscopy (TEM) but coherent precipitates were only observed by TEM, principally evidenced by their Z contrast in annular dark field images. These data have pronounced consequences for the extended use of BFO films under an applied field for actuator, sensor and memory applications.

17.
Chemphyschem ; 17(21): 3570-3575, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27490178

RESUMO

Alkali tantalates and niobates are listed as important photocatalysts for the development of renewable energy technologies and environmental remediation. Herein, the photocatalytic degradation of methylene blue dye in aqueous solution by using highly crystalline particles with perovskite-like structures, LiTaO3 , LiNbO3 , NaTaO3 , NaNbO3 , KNbO3 , and KTaO3 , is investigated. It is demonstrated that ferroelectric KNbO3 is the most efficient photocatalyst of those tested because it combines an electronic band structure that can respond successfully to UVA light with a relatively high surface energy that enhances the catalytic properties. Additionally, the built-in electric field due to internal polarization of ferroelectric particles may contribute to the unique properties of this functional photocatalyst. This work provides an ideal platform for the rational design of more efficient ferroelectric-based photocatalytic devices.

18.
Langmuir ; 32(21): 5241-9, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27136116

RESUMO

A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 µm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics.

20.
Sci Rep ; 6: 20143, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837240

RESUMO

Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 µC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...