Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol Invest ; 46(3): 567-576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36242744

RESUMO

OBJECTIVE: Human brown adipose tissue (BAT) has gained considerable attention as a potential therapeutic target for obesity and its related cardiometabolic diseases; however, whether the gut microbiota might be an efficient stimulus to activate BAT metabolism remains to be ascertained. We aimed to investigate the association of fecal microbiota composition with BAT volume and activity and mean radiodensity in young adults. METHODS: 82 young adults (58 women, 21.8 ± 2.2 years old) participated in this cross-sectional study. DNA was extracted from fecal samples and 16S rRNA sequencing was performed to analyse the fecal microbiota composition. BAT was determined via a static 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography scan (PET/CT) after a 2 h personalized cooling protocol. 18F-FDG uptake was also quantified in white adipose tissue (WAT) and skeletal muscles. RESULTS: The relative abundance of Akkermansia, Lachnospiraceae sp. and Ruminococcus genera was negatively correlated with BAT volume, BAT SUVmean and BAT SUVpeak (all rho ≤ - 0.232, P ≤ 0.027), whereas the relative abundance of Bifidobacterium genus was positively correlated with BAT SUVmean and BAT SUVpeak (all rho ≥ 0.262, P ≤ 0.012). On the other hand, the relative abundance of Sutterellaceae and Bifidobacteriaceae families was positively correlated with 18F-FDG uptake by WAT and skeletal muscles (all rho ≥ 0.213, P ≤ 0.042). All the analyses were adjusted for the PET/CT scan date as a proxy of seasonality. CONCLUSION: Our results suggest that fecal microbiota composition is involved in the regulation of BAT and glucose uptake by other tissues in young adults. Further studies are needed to confirm these findings. CLINICAL TRIAL INFORMATION: ClinicalTrials.gov no. NCT02365129 (registered 18 February 2015).


Assuntos
Microbiota , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Feminino , Humanos , Adulto Jovem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Estudos Transversais , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , RNA Ribossômico 16S/genética
2.
Clin Nutr ; 40(5): 2609-2619, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933727

RESUMO

BACKGROUND & AIMS: Regular consumption of fast-food (FF) as a form of typical Western style diet is associated with obesity and the metabolic syndrome, including its hepatic manifestation nonalcoholic fatty liver disease. Currently, it remains unclear how intermittent excess FF consumption may influence liver metabolism. The study aimed to characterize the effects of a single FF binge on hepatic steatosis, inflammation, bile acid (BA), glucose and lipid metabolism. METHODS: Twenty-five healthy individuals received a FF meal and were asked to continue eating either for a two-hour period or until fully saturated. Serum levels of transaminases, fasting BA, lipid profile, glucose and cytokine levels as well as transient elastography and controlled attenuation parameter (CAP; to assess hepatic steatosis) were analyzed before (day 0) and the day after FF binge (day 1). Feces was collected prior and after the FF challenge for microbiota analysis. RESULTS: The FF meal induced a modest increase in CAP, which was accompanied by a robust increase of fasting serum BA levels. Surprisingly, levels of cholesterol and bilirubin were significantly lower after the FF meal. Differentiating individuals with a relevant delta BA (>1 µmol/l) increase vs. individuals without (delta BA ≤1 µmol/l), identified several gut microbiota, as well as gender to be associated with the BA increase and the observed alterations in liver function, metabolism and inflammation. CONCLUSION: A single binge FF meal leads to a robust increase in serum BA levels and alterations in parameters of liver injury and metabolism, indicating a novel metabolic aspect of the gut-liver axis.


Assuntos
Ácidos e Sais Biliares/química , Metabolismo Energético , Fast Foods , Microbioma Gastrointestinal , Inflamação/etiologia , Adulto , Bilirrubina , Fezes/microbiologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fatores Sexuais , Transaminases/metabolismo , Adulto Jovem
3.
J Hazard Mater ; 403: 123858, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264934

RESUMO

The potential use of microorganisms in the bioremediation of U pollution has been extensively described. However, a lack of knowledge on molecular resistance mechanisms has become a challenge for the use of these technologies. We reported on the transcriptomic and microscopic response of Stenotrophomonas bentonitica BII-R7 exposed to 100 and 250 µM of U. Results showed that exposure to 100 µM displayed up-regulation of 185 and 148 genes during the lag and exponential phases, respectively, whereas 143 and 194 were down-regulated, out of 3786 genes (>1.5-fold change). Exposure to 250 µM of U showed up-regulation of 68 genes and down-regulation of 290 during the lag phase. Genes involved in cell wall and membrane protein synthesis, efflux systems and phosphatases were up-regulated under all conditions tested. Microscopic observations evidenced the formation of U-phosphate minerals at membrane and extracellular levels. Thus, a biphasic process is likely to occur: the increased cell wall would promote the biosorption of U to the cell surface and its precipitation as U-phosphate minerals enhanced by phosphatases. Transport systems would prevent U accumulation in the cytoplasm. These findings contribute to an understanding of how microbes cope with U toxicity, thus allowing for the development of efficient bioremediation strategies.


Assuntos
Urânio , Biodegradação Ambiental , Stenotrophomonas , Transcriptoma , Urânio/toxicidade
4.
J Proteomics ; 201: 93-103, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31009805

RESUMO

Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic inflammatory bowel diseases (IBD) of the gastrointestinal tract. This study used non-invasive LC-MS/MS to find disease specific microbial and human proteins which might be used later for an easier diagnosis. Therefore, 17 healthy controls, 11 CD patients and 14 UC patients but also 13 Irritable Bowel Disease (IBS) patients, 8 Colon Adenoma (CA) patients, and 8 Gastric Carcinoma (GCA) patients were investigated. The proteins were extracted from the fecal samples with liquid phenol in a ball mill. Subsequently, the proteins were digested tryptically to peptides and analyzed by an Orbitrap LC-MS/MS. For protein identification and interpretation of taxonomic and functional results, the MetaProteomeAnalyzer software was used. Cluster analysis and non-parametric test (analysis of similarities) separated healthy controls from patients with CD and UC as well as from patients with GCA. Among others, CD and UC correlated with an increase of neutrophil extracellular traps and immune globulins G (IgG). In addition, a decrease of human IgA and the transcriptional regulatory protein RprY from Bacillus fragilis was found for CD and UC. A specific marker in feces for CD was an increased amount of the human enzyme sucrose-isomaltase. SIGNIFICANCE: Crohn's Disease and Ulcerative Colitis are chronic inflammatory diseases of the gastrointestinal tract, whose diagnosis required comprehensive medical examinations including colonoscopy. The impact of the microbial communities in the gut on the pathogenesis of these diseases is poorly understood. Therefore, this study investigated the impact of gut microbiome on these diseases by a metaproteome approach, revealing several disease specific marker proteins. Overall, this indicated that fecal metaproteomics has the potential to be useful as non-invasive tool for a better and easier diagnosis of both diseases.


Assuntos
Colite Ulcerativa , Doença de Crohn , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
J Environ Manage ; 223: 1-8, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29883777

RESUMO

The abundance of fungi in a full-scale membrane bioreactor (MBR) treating urban wastewater and experiencing seasonal foaming was assessed by quantitative PCR (qPCR), comparing three different sets of widely used universal fungal primers targeting the gene encoding the small ribosomal subunit RNA, 18S-rDNA, (primers NS1-Fung and FungiQuant) or the internal transcribed spacer ITS2 (primers ITS3-ITS4). Fungi were a numerically important fraction of the MBR microbiota (≥106 18S-rDNA copies/L activated sludge), and occurred both in the aerated and anoxic bioreactors. The numbers of copies of fungal markers/L activated sludge calculated using the NS1-Fung or ITS3-ITS4 primer sets were up to 2 orders of magnitude higher than the quantifications based on the FungiQuant primers. Fungal 18S-rDNA counts derived from the FungiQuant primers decreased significantly during cold seasons, concurring with foaming episodes in the MBR. Redundancy analysis corroborated that temperature was the main factor driving fungi abundance, which was also favored by longer solid retention time (SRT), lower chemical oxygen demand/biochemical oxygen demand at 5 days (COD/BOD5) of influent water, and lower biomass accumulation in the MBR.


Assuntos
Reatores Biológicos , Águas Residuárias , Membranas Artificiais , Reação em Cadeia da Polimerase , Esgotos , Eliminação de Resíduos Líquidos
6.
Benef Microbes ; 8(1): 81-96, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27824274

RESUMO

Host mucin is the main constituent of the mucus layer that covers the gut epithelium of the host, and an important source of glycans for the bacteria colonising the intestine. Akkermansia muciniphila is a mucin-degrading bacterium, abundant in the human gut, that is able to produce acetate and propionate during this degradation process. A. muciniphila has been correlated with human health in previous studies, but a mechanistic explanation is lacking. In this study, the main site of colonisation was characterised alongside additional conditions, such as differences in colon pH, prebiotic supplementation and variable mucin supply. To overcome the limitations of in vivo studies concerning variations in mucin availability and difficult access to proximal regions of the colon, a dynamic in vitro gut model (SHIME) was used. In this model, A. muciniphila was found to colonise the distal colon compartment more abundantly than the proximal colon ((±8 log copies/ml compared to ±4 log copies/ml) and the preference for the distal compartment was found to be pH-dependent. The addition of mucin caused a specific increase of A. muciniphila (±4.5 log increase over two days), far exceeding the response of other bacteria present, together with an increase in propionate. These findings suggest that colonisation and mucin degradation by A. muciniphila is dependent on pH and the concentration of mucin. Our results revealed the preference of A. muciniphila for the distal colon environment due to its higher pH and uncovered the quick and stable response of A. muciniphila to mucin supplementation.


Assuntos
Colo/microbiologia , Mucinas/metabolismo , Prebióticos , Verrucomicrobia/fisiologia , Epitélio , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
7.
Water Res ; 105: 507-519, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27668995

RESUMO

Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected.


Assuntos
Membranas Artificiais , Águas Residuárias , Reatores Biológicos/microbiologia , Fungos , Filogenia , Dinâmica Populacional
8.
Water Res ; 92: 208-17, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859516

RESUMO

The abundance of total and metabolically active populations of Mycolata was evaluated in a full-scale membrane bioreactor (MBR) experiencing seasonal foaming, using quantitative PCR (qPCR) and retrotranscribed qPCR (RT-qPCR) targeting the 16S rRNA gene sequence. While the abundance of total Mycolata remained stable (10(10) copies of 16S rRNA genes/L activated sludge) throughout four different experimental phases, significant variations (up to one order of magnitude) were observed when the 16S rRNA was targeted. The highest ratios of metabolically active versus total Mycolata populations were observed in samples of two experimental phases when foaming was experienced in the MBR. Non-metric multidimensional scaling and BIO-ENV analyses demonstrated that this ratio was positively correlated to the concentrations of substrates in the influent water, F/M ratio, and pH, and negatively correlated to temperature and solids retention time. It the first time that the ratio of metabolically active versus total Mycolata is found to be a key parameter triggering foaming in the MBR; thus, we propose it as a candidate predictive tool.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Reatores Biológicos/microbiologia , Membranas Artificiais , Actinobacteria/genética , RNA Ribossômico 16S/genética
9.
Appl Environ Microbiol ; 81(18): 6241-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150458

RESUMO

In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs.


Assuntos
Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Redes e Vias Metabólicas , Oxigenases de Função Mista/metabolismo , Tolueno/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biota , Biotransformação , Carbono/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Hidrogênio/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Áreas Alagadas
10.
Bioresour Technol ; 169: 126-133, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043345

RESUMO

The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal.


Assuntos
Bactérias/genética , Reatores Biológicos/microbiologia , Desnitrificação , Meio Ambiente , Membranas Artificiais , Nitrificação , Biodegradação Ambiental , Desnitrificação/genética , Genes Bacterianos , Limite de Detecção , Nitrificação/genética , Reação em Cadeia da Polimerase , Estações do Ano , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...