Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 451: 114526, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37271313

RESUMO

This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.


Assuntos
Anedonia , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Feminino , Animais , Humanos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Desmame , Metabolismo Energético
2.
An Acad Bras Cienc ; 90(3): 3165-3174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304243

RESUMO

Hibiscus acetosella was shown to exert beneficial effects in humans and animal models however, the effects of this plant on DNA are unknown. The aim of this study was to determine the antigenotoxic and antimutagenic effects of H. acetosella extracts on alkylating agent methyl methanesulfonate (MMS) in vivo in mice. Initially, we performed analysis of phenolic compounds in extracts of H. acetosella by high-performance liquid chromatography (HPLC). Next, mice were divided into 8 groups and treated with distilled water or plant extract (0.1 ml/10 g) by gavage for 15 days, followed by intraperitoneal (ip) administration of saline solution or MMS (40 mg/Kg b.w) on day 16. Caffeic acid, following by gallic acid, gallocatechin, coumaric acid, and 3,4-dihydroxybenzoic acid were found to be present in extracts of H. acetosella leaves. In peripheral blood analysis of groups receiving pretreatment with H. acetosella at doses of 50 or 100 mg/kg plus MMS decreased DNA damage as evidenced by comet assay and Micronucleus assays relative to MMS alone. These results suggested that H. acetosella extracts exerted protective effects dose dependent against genotoxicity and mutagenicity induced by alkylating agents.


Assuntos
Alquilantes/farmacologia , Antimutagênicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Hibiscus/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Substâncias Protetoras/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Dano ao DNA/genética , Masculino , Metanossulfonato de Metila , Camundongos , Mutagênicos , Extratos Vegetais/administração & dosagem
3.
Metab Brain Dis ; 32(1): 115-122, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27510712

RESUMO

Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Apoptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...