Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 10(2): 158-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26646078

RESUMO

Voltage-gated potassium channels are important regulators of electrical excitation in many tissues, with Kv1.2 standing out as an essential contributor in the CNS. Genetic deletion of Kv1.2 invariably leads to early lethality in mice. In humans, mutations affecting Kv1.2 function are linked to epileptic encephalopathy and movement disorders. We have demonstrated that Kv1.2 is subject to a unique regulatory mechanism in which repetitive stimulation leads to dramatic potentiation of current. In this study, we explore the properties and molecular determinants of this use-dependent potentiation/activation. First, we examine how alterations in duty cycle (depolarization and repolarization/recovery times) affect the onset and extent of use-dependent activation. Also, we use trains of repetitive depolarizations to test the effects of a variety of Thr252 (S2-S3 linker) mutations on use-dependent activation. Substitutions of Thr with some sterically similar amino acids (Ser, Val, and Met, but not Cys) retain use-dependent activation, while bulky or charged amino acid substitutions eliminate use-dependence. Introduction of Thr at the equivalent position in other Kv1 channels (1.1, 1.3, 1.4), was not sufficient to transfer the phenotype. We hypothesize that use-dependent activation of Kv1.2 channels is mediated by an extrinsic regulator that binds preferentially to the channel closed state, with Thr252 being necessary but not sufficient for this interaction to alter channel function. These findings extend the conclusions of our recent demonstration of use-dependent activation of Kv1.2-containing channels in hippocampal neurons, by adding new details about the molecular mechanism underlying this effect.


Assuntos
Fibroblastos/metabolismo , Ativação do Canal Iônico , Canal de Potássio Kv1.2/metabolismo , Potenciais da Membrana/fisiologia , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Canal de Potássio Kv1.2/genética , Camundongos , Mutação , Técnicas de Patch-Clamp , Ligação Proteica , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Neurosci ; 35(8): 3515-24, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716850

RESUMO

In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons.


Assuntos
Ativação do Canal Iônico , Neurônios/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Hipocampo/citologia , Masculino , Potenciais da Membrana , Camundongos , Neurônios/fisiologia , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Mol Endocrinol ; 28(3): 406-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24438339

RESUMO

Pancreatic ß-cell death plays a role in both type 1 and type 2 diabetes, but clinical treatments that specifically target ß-cell survival have not yet been developed. We have recently developed live-cell imaging-based, high-throughput screening methods capable of identifying factors that modulate pancreatic ß-cell death, with the hope of finding drugs that can intervene in this process. In the present study, we used a high-content screen and the Prestwick Chemical Library of small molecules to identify drugs that block cell death resulting from exposure to a cocktail of cytotoxic cytokines (25 ng/mL TNF-α, 10 ng/mL IL-1ß, and 10 ng/mL IFN-γ). Data analysis with self-organizing maps revealed that 19 drugs had profiles similar to that of the no cytokine condition, indicating protection. Carbamazepine, an antiepileptic Na(+) channel inhibitor, was particularly interesting because Na(+) channels are not generally considered targets for antiapoptotic therapy in diabetes and because the function of these channels in ß-cells has not been well studied. We analyzed the expression and characteristics of Na(+) currents in mature ß-cells from MIP-GFP mice. We confirmed the dose-dependent protective effects of carbamazepine and another use-dependent Na(+) channel blocker in cytokine-treated mouse islet cells. Carbamazepine down-regulated the proapoptotic and endoplasmic reticulum stress signaling induced by cytokines. Together, these studies point to Na(+) channels as a novel therapeutic target in diabetes.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/fisiologia , Células Secretoras de Insulina/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Carbamazepina/farmacologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Ensaios de Triagem em Larga Escala , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
4.
Mol Pharmacol ; 84(4): 572-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23887925

RESUMO

Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltage-dependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block. We have identified unique consequences of a glutamate substitution in the region of the helix bundle crossing of Kir6.2. Firstly, glutamate substitution at Kir6.2 residue F168 generates channels with intrinsic inward rectification that does not require blockade by intracellular polyamines or Mg(2+). In addition, these F168E channels exhibit a unique "spiked" tail phenotype, whereby large decaying inward tail currents are elicited upon spermine unbinding. This contrasts with the time-dependent recovery of current typically associated with blocker unbinding from ion channels. Interestingly, Kir6.2[F168E] channels exhibit a paradoxical biphasic conductance-voltage relationship in the presence of certain polyamines. This reflects channel blockade at positive voltages, channel stimulation at intermediate voltages, and exclusion of spermine from the pore at negative voltages. These features are recapitulated by a simple kinetic scheme in which weakly voltage-dependent spermine binding to a "shallow" site in the pore (presumably formed by the introduced glutamate at F168E) stabilizes opening of the bundle crossing gate. These findings illustrate the potential for dichotomous effects of a blocker in a long pore (with multiple binding sites), and offer a unique example of targeted modulation of the Kir channel gating apparatus.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Camundongos
5.
Front Pharmacol ; 3: 109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701426

RESUMO

Na(V) channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of Na(V)1.2, Na(V)1.4, and Na(V)1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas Na(V)1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in Na(V)1.2 and Na(V)1.5 were profound. In Na(V)1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in Na(V)1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability.

6.
J Biol Chem ; 286(42): 36686-93, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878633

RESUMO

Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.2 channels mutated to encode glutamate at this position (F168E). Despite a prediction of four glutamates in close proximity, Kir6.2(F168E) channels are predominantly closed at physiological pH, whereas alkalization causes rapid and reversible channel activation. These findings suggest that F168E glutamates are uncharged at physiological pH but become deprotonated at alkaline pH, forcing channel opening due to mutual repulsion of nearby negatively charged side chains. The potassium channel pore scaffold likely brings these glutamates close together, causing a significant pK(a) shift relative to the free side chain (as seen in the KcsA selectivity filter). Alkalization also shifts the apparent ATP sensitivity of the channel, indicating that forced motion of the bundle crossing is coupled to the ATP-binding site and may resemble conformational changes involved in wild-type Kir6.2 gating. The study demonstrates a novel mechanism for engineering extrinsic control of channel gating by pH and shows that conformational changes in the bundle crossing region are involved in ligand-dependent gating of Kir channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Concentração de Íons de Hidrogênio , Camundongos , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Conformação Proteica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA