Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 9(1): bpae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765636

RESUMO

Allometry refers to the relationship between the size of a trait and that of the whole body of an organism. Pioneering observations by Otto Snell and further elucidation by D'Arcy Thompson set the stage for its integration into Huxley's explanation of constant relative growth that epitomizes through the formula of simple allometry. The traditional method to identify such a model conforms to a regression protocol fitted in the direct scales of data. It involves Huxley's formula-systematic part and a lognormally distributed multiplicative error term. In many instances of allometric examination, the predictive strength of this paradigm is unsuitable. Established approaches to improve fit enhance the complexity of the systematic relationship while keeping the go-along normality-borne error. These extensions followed Huxley's idea that considering a biphasic allometric pattern could be necessary. However, for present data composing 10 410 pairs of measurements of individual eelgrass leaf dry weight and area, a fit relying on a biphasic systematic term and multiplicative lognormal errors barely improved correspondence measure values while maintaining a heavy tails problem. Moreover, the biphasic form and multiplicative-lognormal-mixture errors did not provide complete fit dependability either. However, updating the outline of such an error term to allow heteroscedasticity to occur in a piecewise-like mode finally produced overall fit consistency. Our results demonstrate that when attempting to achieve fit quality improvement in a Huxley's model-based multiplicative error scheme, allowing for a complex allometry form for the systematic part, a non-normal distribution-driven error term and a composite of uneven patterns to describe the heteroscedastic outline could be essential.

2.
Biomed Res Int ; 2022: 8310213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172489

RESUMO

Huxley's model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research, resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size, and overall data quality can undermine the reliability of a fit of Huxley's model. Customary amendments enhance the complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure. The resulting protocols bear multiple-parameter complex allometry forms that could pose interpretative shortcomings and parameter estimation difficulties, and even being empirically pertinent, they could potentially bear overfitting. A subsequent heavy-tailed Q-Q normal spread often remains undetected since the adequacy of a normally distributed error term remains unexplored. Previously, we promoted the advantages of keeping Huxley's model-driven systematic part while switching to a logistically distributed error term to improve fit quality. Here, we analyzed eelgrass leaf biomass and area data exhibiting a marked size-related heterogeneity, perhaps explaining a lack of systematization at data gathering. Overdispersion precluded adequacy of the logistically adapted protocol, thereby suggesting processing data through a median absolute deviation scheme aimed to remove unduly replicates. Nevertheless, achieving regularity to Huxley's power function-like trend required the removal of many replicates, thereby questioning the integrity of a data cleaning approach. But, we managed to adapt the complexity of the error term to reliably identify Huxley's model-like systematic part masked by variability in data. Achieving this relied on an error term conforming to a normal mixture distribution which successfully managed overdispersion in data. Compared to normal-complex allometry and data cleaning composites present arrangement delivered a coherent Q-Q normal mixture spread and a remarkable reproducibility strength of derived proxies. By keeping the analysis within Huxley's original theory, the present approach enables substantiating nondestructive allometric proxies aimed at eelgrass conservation. The viewpoint endorsed here could also make data cleaning unnecessary.


Assuntos
Modelos Biológicos , Biomassa , Distribuição Normal , Folhas de Planta , Reprodutibilidade dos Testes , Tamanho da Amostra
3.
PeerJ ; 8: e8173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934498

RESUMO

BACKGROUND: The traditional allometric analysis relies on log- transformation to contemplate linear regression in geometrical space then retransforming to get Huxley's model of simple allometry. Views assert this induces bias endorsing multi-parameter complex allometry forms and nonlinear regression in arithmetical scales. Defenders of traditional approach deem it necessary since generally organismal growth is essentially multiplicative. Then keeping allometry as originally envisioned by Huxley requires a paradigm of polyphasic loglinear allometry. A Takagi-Sugeno-Kang fuzzy model assembles a mixture of weighted sub models. This allows direct identification of break points for transition between phases. Then, this paradigm is seamlessly appropriate for efficient allometric examination of polyphasic loglinear allometry patterns. Here, we explore its suitability. METHODS: Present fuzzy model embraces firing strength weights from Gaussian membership functions and linear consequents. Weights are identified by subtractive clustering and consequents through recursive least squares or maximum likelihood. Intersection of firing strength factors set criterion to estimate breakpoints. A multi-parameter complex allometry model follows by adapting firing strengths by composite membership functions and linear consequents in arithmetical space. RESULTS: Takagi-Sugeno-Kang surrogates adapted complexity depending on analyzed data set. Retransformation results conveyed reproducibility strength of similar proxies identified in arithmetical space. Breakpoints were straightforwardly identified. Retransformed form implies complex allometry as a generalization of Huxley's power model involving covariate depending parameters. Huxley reported a breakpoint in the log-log plot of chela mass vs. body mass of fiddler crabs (Uca pugnax), attributed to a sudden change in relative growth of the chela approximately when crabs reach sexual maturity. G.C. Packard implied this breakpoint as putative. However, according to present fuzzy methods existence of a break point in Huxley's data could be validated. CONCLUSIONS: Offered scheme bears reliable analysis of zero intercept allometries based on geometrical space protocols. Endorsed affine structure accommodates either polyphasic or simple allometry if whatever turns required. Interpretation of break points characterizing heterogeneity is intuitive. Analysis can be achieved in an interactive way. This could not have been obtained by relying on customary approaches. Besides, identification of break points in arithmetical scale is straightforward. Present Takagi-Sugeno-Kang arrangement offers a way to overcome the controversy between a school considering a log-transformation necessary and their critics claiming that consistent results can be only obtained through complex allometry models fitted by direct nonlinear regression in the original scales.

4.
Biomed Res Int ; 2019: 3613679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179319

RESUMO

Conservation of eelgrass relies on transplants and evaluation of success depends on nondestructive measurements of average leaf biomass in shoots among other variables. Allometric proxies offer a convenient way to assessments. Identifying surrogates via log transformation and linear regression can set biased results. Views conceive this approach to be meaningful, asserting that curvature in geometrical space explains bias. Inappropriateness of correction factor of retransformation bias could also explain inconsistencies. Accounting for nonlinearity of the log transformed response relied on a generalized allometric model. Scaling parameters depend continuously on the descriptor. Joining correction factor is conceived as the partial sum of series expansion of mean retransformed residuals leading to highest reproducibility strength. Fits of particular characterizations of the generalized curvature model conveyed outstanding reproducibility of average eelgrass leaf biomass in shoots. Although nonlinear heteroscedastic regression resulted also to be suitable, only log transformation approaches can unmask a size related differentiation in growth form of the leaf. Generally, whenever structure of regression error is undetermined, choosing a suitable form of retransformation correction factor becomes elusive. Compared to customary nonparametric characterizations of this correction factor, present form proved more efficient. We expect that offered generalized allometric model along with proposed correction factor form provides a suitable analytical arrangement for the general settings of allometric examination.


Assuntos
Biomassa , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento
5.
Theor Appl Genet ; 132(5): 1587-1606, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30747261

RESUMO

KEY MESSAGE: Current genome-enabled prediction models assumed errors normally distributed, which are sensitive to outliers. We propose a model with errors assumed to follow a Laplace distribution to deal better with outliers. Current genome-enabled prediction models use regressions that fit the expected value (mean) of a response variable with errors assumed normally distributed, which are often sensitive to outliers, either genetic or environmental. For this reason, we propose a robust Bayesian genome median regression (BGMR) model that fits regressions to the medians of a distribution, with errors assumed to follow a Laplace distribution to deal better with outliers. The BGMR model was evaluated under a Bayesian framework with Markov Chain Monte Carlo sampling using a location-scale mixture representation of the Laplace distribution. The BGMR was implemented with two simulated and two real genomic data sets, and we compared its prediction performance with that of a conventional genomic best linear unbiased prediction (GBLUP) model and the Laplace maximum a posteriori (LMAP) method. The prediction accuracies of BGMR were higher than those of the GBLUP and LMAP methods when there were outliers. The BGMR model could be useful to breeders who need to predict and select genotypes based on data with unknown outliers.


Assuntos
Cruzamento , Genoma de Planta , Modelos Teóricos , Plantas/genética , Teorema de Bayes , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Análise de Regressão
6.
Theor Biol Med Model ; 15(1): 4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510759

RESUMO

BACKGROUND: The effects of current anthropogenic influences on eelgrass (Zostera marina) meadows are noticeable. Eelgrass ecological services grant important benefits for mankind. Preservation of eelgrass meadows include several transplantation methods. Evaluation of establishing success relies on the estimation of standing stock and productivity. Average leaf biomass in shoots is a fundamental component of standing stock. Existing methods of leaf biomass measurement are destructive and time consuming. These assessments could alter shoot density in developing transplants. Allometric methods offer convenient indirect assessments of individual leaf biomass. Aggregation of single leaf projections produce surrogates for average leaf biomass in shoots. Involved parameters are time invariant, then derived proxies yield simplified nondestructive approximations. On spite of time invariance local factors induce relative variability of parameter estimates. This influences accuracy of surrogates. And factors like analysis method, sample size and data quality also impact precision. Besides, scaling projections are sensitive to parameter fluctuation. Thus the suitability of the addressed allometric approximations requires clarification. RESULTS: The considered proxies produced accurate indirect assessments of observed values. Only parameter estimates fitted from raw data using nonlinear regression, produced robust approximations. Data quality influenced sensitivity and sample size for an optimal precision. CONCLUSIONS: Allometric surrogates of average leaf biomass in eelgrass shoots offer convenient nondestructive assessments. But analysis method and sample size can influence accuracy in a direct manner. Standardized routines for data quality are crucial on granting cost-effectiveness of the method.


Assuntos
Biomassa , Confiabilidade dos Dados , Folhas de Planta , Estatística como Assunto/normas , Zosteraceae , Tamanho da Amostra
7.
Theor Biol Med Model ; 12: 30, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627684

RESUMO

BACKGROUND: Eelgrass grants important ecological benefits including a nursery for waterfowl and fish species, shoreline stabilization, nutrient recycling and carbon sequestration. Upon the exacerbation of deleterious anthropogenic influences, re-establishment of eelgrass beds has mainly depended on transplantation. Productivity estimations provide valuable information for the appraisal of the restoration of ecological functions of natural populations. Assessments over early stages of transplants should preferably be nondestructive. Allometric scaling of eelgrass leaf biomass in terms of matching length provides a proxy that reduces leaf biomass and productivity estimations to simple measurements of leaf length and its elongation over a period. We examine how parameter variability impacts the accuracy of the considered proxy and the extent on what data quality and sample size influence the uncertainties of the involved allometric parameters. METHODS: We adapted a Median Absolute Deviation data quality control procedure to remove inconsistencies in the crude data. For evaluating the effect of parametric uncertainty we performed both a formal exploration and an analysis of the sensitivity of the allometric projection method to parameter changes. We used parameter estimates obtained by means of nonlinear regression from crude as well as processed data. RESULTS: We obtained reference leaf growth rates by allometric projection using parameter estimates produced by the crude data, and then considered changes in fitted parameters bounded by the modulus of the vector of the linked standard errors, we found absolute deviations up to 10% of reference values. After data quality control, the equivalent maximum deviation was under 7% of corresponding reference rates. Therefore, the addressed allometric method is robust. Even the smaller sized samples in the quality controlled dataset produced better accuracy levels than the whole set of crude data. CONCLUSIONS: We propose quality control of data as a highly recommended step in the overall procedure that leads to reliable allometric surrogates of eelgrass leaf growth rates. The proliferation of inconsistent replicates in the crude data points towards the importance of discarding incomplete leaves. We also recommend avoiding errors in estimating the biomass of small leaves for which precision of the used analytical scale might be an issue.


Assuntos
Confiabilidade dos Dados , Folhas de Planta/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento , Viés , Biomassa , Folhas de Planta/anatomia & histologia , Controle de Qualidade , Tamanho da Amostra
8.
Source Code Biol Med ; 9(1): 29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25649318

RESUMO

BACKGROUND: Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images. RESULTS: Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were independent of sample size. CONCLUSION: The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...