Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 683861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368133

RESUMO

Expression of Wilms' tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20-25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2 Cre ) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.

2.
Aging Cell ; 20(7): e13383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092006

RESUMO

Aging is the main risk factor for cardiovascular diseases. In humans, cardiac aging remains poorly characterized. Most studies are based on chronological age (CA) and disregard biological age (BA), the actual physiological age (result of the aging rate on the organ structure and function), thus yielding potentially imperfect outcomes. Deciphering the molecular basis of ventricular aging, especially by BA, could lead to major progresses in cardiac research. We aim to describe the transcriptome dynamics of the aging left ventricle (LV) in humans according to both CA and BA and characterize the contribution of microRNAs, key transcriptional regulators. BA is measured using two CA-associated transcriptional markers: CDKN2A expression, a cell senescence marker, and apparent age (AppAge), a highly complex transcriptional index. Bioinformatics analysis of 132 LV samples shows that CDKN2A expression and AppAge represent transcriptomic changes better than CA. Both BA markers are biologically validated in relation to an aging phenotype associated with heart dysfunction, the amount of cardiac fibrosis. BA-based analyses uncover depleted cardiac-specific processes, among other relevant functions, that are undetected by CA. Twenty BA-related microRNAs are identified, and two of them highly heart-enriched that are present in plasma. We describe a microRNA-gene regulatory network related to cardiac processes that are partially validated in vitro and in LV samples from living donors. We prove the higher sensitivity of BA over CA to explain transcriptomic changes in the aging myocardium and report novel molecular insights into human LV biological aging. Our results can find application in future therapeutic and biomarker research.


Assuntos
Envelhecimento/genética , Biomarcadores/metabolismo , Ventrículos do Coração/metabolismo , MicroRNAs/genética , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...