Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540317

RESUMO

Mutationsin epidermal growth factor receptor (EGFR) are found in approximately 48% of Asian and 19% of Western patients with lung adenocarcinoma (LUAD), leading to aggressive tumor growth. While tyrosine kinase inhibitors (TKIs) like gefitinib and osimertinib target this mutation, treatments often face challenges such as metastasis and resistance. To address this, we developed physiologically based pharmacokinetic (PBPK) models for both drugs, simulating their distribution within the primary tumor and metastases following oral administration. These models, combined with a mechanistic knowledge-based disease model of EGFR-mutated LUAD, allow us to predict the tumor's behavior under treatment considering the diversity within the tumor cells due to different mutations. The combined model reproduces the drugs' distribution within the body, as well as the effects of both gefitinib and osimertinib on EGFR-activation-induced signaling pathways. In addition, the disease model encapsulates the heterogeneity within the tumor through the representation of various subclones. Each subclone is characterized by unique mutation profiles, allowing the model to accurately reproduce clinical outcomes, including patients' progression, aligning with RECIST criteria guidelines (version 1.1). Datasets used for calibration came from NEJ002 and FLAURA clinical trials. The quality of the fit was ensured with rigorous visual predictive checks and statistical tests (comparison metrics computed from bootstrapped, weighted log-rank tests: 98.4% (NEJ002) and 99.9% (FLAURA) similarity). In addition, the model was able to predict outcomes from an independent retrospective study comparing gefitinib and osimertinib which had not been used within the model development phase. This output validation underscores mechanistic models' potential in guiding future clinical trials by comparing treatment efficacies and identifying patients who would benefit most from specific TKIs. Our work is a step towards the design of a powerful tool enhancing personalized treatment in LUAD. It could support treatment strategy evaluations and potentially reduce trial sizes, promising more efficient and targeted therapeutic approaches. Following its consecutive prospective validations with the FLAURA2 and MARIPOSA trials (validation metrics computed from bootstrapped, weighted log-rank tests: 94.0% and 98.1%, respectively), the model could be used to generate a synthetic control arm.

2.
Stat Med ; 38(2): 221-235, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30259533

RESUMO

In human immunodeficiency virus-infected patients, antiretroviral therapy suppresses the viral replication, which is followed in most patients by a restoration of CD4+ T cells pool. For patients who fail to do so, repeated injections of exogenous interleukin 7 (IL7) are experimented. The IL7 is a cytokine that is involved in the T cell homeostasis and the INSPIRE study has shown that injections of IL7 induced a proliferation of CD4+ T cells. Phase I/II INSPIRE 2 and 3 studies have evaluated a protocol in which a first cycle of three IL7 injections is followed by a new cycle at each visit when the patient has less than 550 CD4 cells/µL. Restoration of the CD4 concentration has been demonstrated, but the long-term best adaptive protocol is yet to be determined. A mechanistic model of the evolution of CD4 after IL7 injections has been developed, which is based on a system of ordinary differential equations and includes random effects. Based on the estimation of this model, we use a Bayesian approach to forecast the dynamics of CD4 in new patients. We propose four prediction-based adaptive protocols of injections to minimize the time spent under 500 CD4 cells/µL for each patient, without increasing the number of injections received too much. We show that our protocols significantly reduce the time spent under 500 CD4 over a period of two years, without increasing the number of injections. These protocols have the potential to increase the efficiency of this therapy.


Assuntos
Contagem de Linfócito CD4/estatística & dados numéricos , Infecções por HIV/tratamento farmacológico , Interleucina-7/uso terapêutico , Modelos Estatísticos , Adulto , Protocolos Clínicos , Interpretação Estatística de Dados , Humanos , Resultado do Tratamento
3.
Bull Math Biol ; 80(9): 2349-2377, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30073567

RESUMO

Immune interventions consisting in repeated injections are broadly used as they are thought to improve the quantity and the quality of the immune response. However, they also raise several questions that remain unanswered, in particular the number of injections to make or the delay to respect between different injections to achieve this goal. Practical and financial considerations add constraints to these questions, especially in the framework of human studies. We specifically focus here on the use of interleukin-7 (IL-7) injections in HIV-infected patients under antiretroviral treatment, but still unable to restore normal levels of [Formula: see text] T lymphocytes. Clinical trials have already shown that repeated cycles of injections of IL-7 could help maintaining [Formula: see text] T lymphocytes levels over the limit of 500 cells/[Formula: see text]L, by affecting proliferation and survival of [Formula: see text] T cells. We then aim at answering the question: how to maintain a patients level of [Formula: see text] T lymphocytes by using a minimum number of injections (i.e., optimizing the strategy of injections)? Based on mechanistic models that were previously developed for the dynamics of [Formula: see text] T lymphocytes in this context, we model the process by a piecewise deterministic Markov model. We then address the question by using some recently established theory on impulse control problem in order to develop a numerical tool determining the optimal strategy. Results are obtained on a reduced model, as a proof of concept: the method allows to define an optimal strategy for a given patient. This method could be applied to optimize injections schedules in clinical trials.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/terapia , Interleucina-7/administração & dosagem , Algoritmos , Fármacos Anti-HIV/uso terapêutico , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Terapia Combinada , Simulação por Computador , Relação Dose-Resposta Imunológica , Esquema de Medicação , Infecções por HIV/tratamento farmacológico , Humanos , Imunoterapia/métodos , Imunoterapia/estatística & dados numéricos , Interleucina-7/uso terapêutico , Cadeias de Markov , Conceitos Matemáticos , Modelos Imunológicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
4.
J Theor Biol ; 386: 147-58, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26409166

RESUMO

The evenness of an ecological community affects ecosystem structure, functioning and stability, and has implications for biodiversity conservation. In uneven communities, most species are rare while a few dominant species drive ecosystem-level properties. In even communities, dominance is lower, with possibly many species playing key ecological roles. The dominance aspect of evenness can be measured as a decreasing function of the proportion of species required to make up a fixed fraction (e.g., half) of individuals in a community. Here we sought general rules about dominance in ecological communities by linking dominance mathematically to the parameters of common theoretical species-abundance distributions (SADs). We found that if a community's SAD was log-series or lognormal, then dominance was almost inevitably high, with fewer than 40% of species required to account for 90% of all individuals. Dominance for communities with an exponential SAD was lower but still typically high, with fewer than 40% of species required to account for 70% of all individuals. In contrast, communities with a gamma SAD only exhibited high dominance when the average species abundance was below a threshold of approximately 100. Furthermore, we showed that exact values of dominance were highly scale-dependent, exhibiting non-linear trends with changing average species abundance. We also applied our formulae to SADs derived from a mechanistic community model to demonstrate how dominance can increase with environmental variance. Overall, our study provides a rigorous basis for theoretical explorations of the dynamics of dominance in ecological communities, and how this affects ecosystem functioning and stability.


Assuntos
Biodiversidade , Modelos Biológicos , Animais , Biota , Dinâmica Populacional , Especificidade da Espécie , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...