Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123503

RESUMO

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Assuntos
Distonia Muscular Deformante , Distonia , Camundongos , Animais , Dopamina/análise , Distonia/genética , Distonia Muscular Deformante/genética , Corpo Estriado/química , Sinapses/ultraestrutura
2.
Cereb Cortex ; 31(7): 3408-3425, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676368

RESUMO

The synaptic organization of thalamic inputs to motor cortices remains poorly understood in primates. Thus, we compared the regional and synaptic connections of vGluT2-positive thalamocortical glutamatergic terminals in the supplementary motor area (SMA) and the primary motor cortex (M1) between control and MPTP-treated parkinsonian monkeys. In controls, vGluT2-containing fibers and terminal-like profiles invaded layer II-III and Vb of M1 and SMA. A significant reduction of vGluT2 labeling was found in layer Vb, but not in layer II-III, of parkinsonian animals, suggesting a potential thalamic denervation of deep cortical layers in parkinsonism. There was a significant difference in the pattern of synaptic connectivity in layers II-III, but not in layer Vb, between M1 and SMA of control monkeys. However, this difference was abolished in parkinsonian animals. No major difference was found in the proportion of perforated versus macular post-synaptic densities at thalamocortical synapses between control and parkinsonian monkeys in both cortical regions, except for a slight increase in the prevalence of perforated axo-dendritic synapses in the SMA of parkinsonian monkeys. Our findings suggest that disruption of the thalamic innervation of M1 and SMA may underlie pathophysiological changes of the motor thalamocortical loop in the state of parkinsonism.


Assuntos
Córtex Motor/ultraestrutura , Transtornos Parkinsonianos/patologia , Densidade Pós-Sináptica/ultraestrutura , Tálamo/ultraestrutura , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Feminino , Macaca mulatta , Masculino , Vias Neurais/ultraestrutura , Neurotoxinas , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
J Comp Neurol ; 529(7): 1703-1718, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084025

RESUMO

The glutamate receptor delta 1 (GluD1) is strongly expressed in the striatum. Knockout of GluD1 expression in striatal neurons elicits cognitive deficits and disrupts the thalamostriatal system in mice. To understand the potential role of GluD1 in the primate striatum, we compared the cellular and subcellular localization of striatal GluD1 immunoreactivity (GluD1-IR) in mice and monkeys. In both species, striatal GluD1-IR displayed a patchy pattern of distribution in register with the striosome/matrix compartmentation, but in an opposite fashion. While GluD1 was more heavily expressed in the striosomes than the matrix in the monkey caudate nucleus, the opposite was found in the mouse striatum. At the electron microscopic level, GluD1-IR was preferentially expressed in dendritic shafts (47.9 ± 1.2%), followed by glia (37.7 ± 2.5%), and dendritic spines (14.3 ± 2.6%) in the matrix of the mouse striatum. This pattern was not statistically different from the labeling in the striosome and matrix compartments of the monkey caudate nucleus, with the exception of a small amount of GluD1-positive unmyelinated axons and axon terminals in the primate striatum. Immunogold staining revealed synaptic and perisynaptic GluD1 labeling at putative axo-dendritic and axo-spinous glutamatergic synapses, and intracellular labeling on the surface of mitochondria. Confocal microscopy showed that GluD1 is preferentially colocalized with thalamic over cortical terminals in both the striosome and matrix compartments. These data provide the anatomical substrate for a deeper understanding of GluD1 regulation of striatal glutamatergic synapses, but also suggest possible extrasynaptic, glial, and mitochondrial GluD1 functions.


Assuntos
Corpo Estriado/metabolismo , Receptores de Glutamato/metabolismo , Animais , Macaca mulatta , Masculino , Camundongos
4.
Neurobiol Dis ; 137: 104746, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31945419

RESUMO

Impaired behavioral flexibility and repetitive behavior is a common phenotype in autism and other neuropsychiatric disorders, but the underlying synaptic mechanisms are poorly understood. The trans-synaptic glutamate delta (GluD)-Cerebellin 1-Neurexin complex, critical for synapse formation/maintenance, represents a vulnerable axis for neuropsychiatric diseases. We have previously found that GluD1 deletion results in reversal learning deficit and repetitive behavior. In this study, we show that selective ablation of GluD1 from the dorsal striatum impairs behavioral flexibility in a water T-maze task. We further found that striatal GluD1 is preferentially found in dendritic shafts, and more frequently associated with thalamic than cortical glutamatergic terminals suggesting localization to projections from the thalamic parafascicular nucleus (Pf). Conditional deletion of GluD1 from the striatum led to a selective loss of thalamic, but not cortical, terminals, and reduced glutamatergic neurotransmission. Optogenetic studies demonstrated functional changes at thalamostriatal synapses from the Pf, but no effect on the corticostriatal system, upon ablation of GluD1 in the dorsal striatum. These studies suggest a novel molecular mechanism by which genetic variations associated with neuropsychiatric disorders may impair behavioral flexibility, and reveal a unique principle by which GluD1 subunit regulates forebrain circuits.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/metabolismo , Receptores de Glutamato/metabolismo , Tálamo/metabolismo , Animais , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Neurogênese/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiopatologia
5.
Brain Struct Funct ; 224(9): 3321-3338, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31679085

RESUMO

In both Parkinson's disease (PD) patients and MPTP-treated non-human primates, there is a profound neuronal degeneration of the intralaminar centromedian/parafascicular (CM/Pf) thalamic complex. Although this thalamic pathology has long been established in PD (and other neurodegenerative disorders), the impact of CM/Pf cell loss on the integrity of the thalamo-striatal glutamatergic system and its regulatory functions upon striatal neurons remain unknown. In the striatum, cholinergic interneurons (ChIs) are important constituents of the striatal microcircuitry and represent one of the main targets of CM/Pf-striatal projections. Using light and electron microscopy approaches, we have analyzed the potential impact of CM/Pf neuronal loss on the anatomy of the synaptic connections between thalamic terminals (vGluT2-positive) and ChIs neurons in the striatum of parkinsonian monkeys treated chronically with MPTP. The following conclusions can be drawn from our observations: (1) as reported in PD patients, and in our previous monkey study, CM/Pf neurons undergo profound degeneration in monkeys chronically treated with low doses of MPTP. (2) In the caudate (head and body) nucleus of parkinsonian monkeys, there is an increased density of ChIs. (3) Despite the robust loss of CM/Pf neurons, no significant change was found in the density of thalamostriatal (vGluT2-positive) terminals, and in the prevalence of vGluT2-positive terminals in contact with ChIs in parkinsonian monkeys. These findings provide new information about the state of thalamic innervation of the striatum in parkinsonian monkeys with CM/Pf degeneration, and bring up an additional level of intricacy to the consequences of thalamic pathology upon the functional microcircuitry of the thalamostriatal system in parkinsonism. Future studies are needed to assess the importance of CM/Pf neuronal loss, and its potential consequences on the neuroplastic changes induced in the synaptic organization of the thalamostriatal system, in the development of early cognitive impairments in PD.


Assuntos
Núcleo Caudado/patologia , Neurônios Colinérgicos/patologia , Ácido Glutâmico , Núcleos Intralaminares do Tálamo/patologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Putamen/patologia , Animais , Núcleo Caudado/ultraestrutura , Neurônios Colinérgicos/ultraestrutura , Feminino , Interneurônios/patologia , Interneurônios/ultraestrutura , Núcleos Intralaminares do Tálamo/ultraestrutura , Macaca mulatta , Masculino , Vias Neurais/patologia , Vias Neurais/ultraestrutura , Neurônios/ultraestrutura , Putamen/ultraestrutura , Sinapses/patologia , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
6.
Sci Rep ; 9(1): 3528, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837611

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disorder associated with progressive motor and cognitive impairments, and the expansion of a cysteine-adenine-guanine trinucleotide (polyglutamine) repeats in exon one of the human huntingtin gene. The pathology of the disease is characterized by a profound degeneration of striatal GABAergic projection neurons with relative sparing of interneurons accompanied with astrogliosis. Here, we describe the striatal pathology in two genotypically different transgenic HD monkeys that exhibit degrees of disease progression that resembled those seen in juvenile- (rHD1) and adult-onset (rHD7) HD. The caudate nucleus and putamen underwent severe neuronal loss in both animals, while the striatal volume was reduced only in rHD1, the most severely affected monkey. The number of GABAergic (calretinin- and parvalbumin-positive) and cholinergic interneurons was also reduced in most striatal regions of these two monkeys, but to variable degrees. Overall, the density of interneurons was increased in rHD1, but not in rHD7, suggesting a relative sparing of interneurons over projection neurons in the striatum of the most affected HD monkey. The neuropil of both the caudate nucleus and putamen was invaded with reactive astrocytes in rHD1, while astrogliosis was much less severe in rHD7 and absent from control. Combined with behavioral data collected from these monkeys, our findings further demonstrate that transgenic HD monkeys share similar disease patterns with HD patients, making them a highly reliable preclinical HD animal model.


Assuntos
Doença de Huntington/patologia , Interneurônios/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Modelos Animais de Doenças , Haplorrinos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Interneurônios/patologia , Putamen/metabolismo , Putamen/patologia
7.
Front Syst Neurosci ; 12: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997483

RESUMO

Striatal cholinergic dysfunction is a common phenotype associated with various forms of dystonia in which anti-cholinergic drugs have some therapeutic benefits. However, the underlying substrate of striatal cholinergic defects in dystonia remain poorly understood. In this study, we used a recently developed knock-in mouse model of dopamine-responsive dystonia (DRD) with strong symptomatic responses to anti-cholinergic drugs, to assess changes in the prevalence and morphology of striatal cholinergic interneurons (ChIs) in a model of generalized dystonia. Unbiased stereological neuronal counts and Sholl analysis were used to address these issues. To determine the potential effect of aging on the number of ChIs, both young (3 months old) and aged (15 months old) mice were used. For purpose of comparisons with ChIs, the number of GABAergic parvalbumin (PV)-immunoreactive striatal interneurons was also quantified in young mice. Overall, no significant change in the prevalence of ChIs and PV-immunoreactive cells was found throughout various functional regions of the striatum in young DRD mice. Similar results were found for ChIs in aged animals. Subtle changes in the extent and complexity of the dendritic tree of ChIs were found in middle and caudal regions of the striatum in DRD mice. Additional immunohistochemical data also suggested lack of significant change in the expression of striatal cholinergic M1 and M4 muscarinic receptors immunoreactivity in DRD mice. Thus, together with our previous data from a knock-in mouse model of DYT-1 dystonia (Song et al., 2013), our data further suggest that the dysregulation of striatal cholinergic transmission in dystonia is not associated with major neuroplastic changes in the morphology or prevalence of striatal ChIs. Highlights -There is no significant change in the number of striatal ChIs in young and aged mice model of DRD-There is no significant change in the prevalence of striatal GABAergic PV-containing interneurons in the striatum of young mice models of DRD-Subtle morphological changes in the dendritic arborization of striatal ChIs are found in the middle and caudal tiers of the striatum in young mice models of DRD-The levels of both M1 and M4 muscarinic receptors immunoreactivity are not significantly changed in the striatum of DRD mice-Major changes in the prevalence and morphology of striatal ChIs are unlikely to underlie striatal cholinergic dysfunction in DRD.

8.
J Neural Transm (Vienna) ; 125(3): 431-447, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28540422

RESUMO

In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.


Assuntos
Corpo Estriado/patologia , Espinhas Dendríticas/patologia , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Doença de Parkinson/patologia , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Haplorrinos , Doença de Parkinson/fisiopatologia
9.
Front Neuroanat ; 9: 117, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441550

RESUMO

The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson's disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.

10.
J Clin Invest ; 125(4): 1497-508, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751059

RESUMO

Synaptic plasticity is the ability of synapses to modulate the strength of neuronal connections; however, the molecular factors that regulate this feature are incompletely understood. Here, we demonstrated that mice lacking brain-specific angiogenesis inhibitor 1 (BAI1) have severe deficits in hippocampus-dependent spatial learning and memory that are accompanied by enhanced long-term potentiation (LTP), impaired long-term depression (LTD), and a thinning of the postsynaptic density (PSD) at hippocampal synapses. We showed that compared with WT animals, mice lacking Bai1 exhibit reduced protein levels of the canonical PSD component PSD-95 in the brain, which stems from protein destabilization. We determined that BAI1 prevents PSD-95 polyubiquitination and degradation through an interaction with murine double minute 2 (MDM2), the E3 ubiquitin ligase that regulates PSD-95 stability. Restoration of PSD-95 expression in hippocampal neurons in BAI1-deficient mice by viral gene therapy was sufficient to compensate for Bai1 loss and rescued deficits in synaptic plasticity. Together, our results reveal that interaction of BAI1 with MDM2 in the brain modulates PSD-95 levels and thereby regulates synaptic plasticity. Moreover, these results suggest that targeting this pathway has therapeutic potential for a variety of neurological disorders.


Assuntos
Proteínas Angiogênicas/fisiologia , Guanilato Quinases/metabolismo , Hipocampo/fisiopatologia , Deficiências da Aprendizagem/genética , Proteínas de Membrana/metabolismo , Transtornos da Memória/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Aprendizagem Espacial/fisiologia , Proteínas Angiogênicas/deficiência , Proteínas Angiogênicas/genética , Animais , Encéfalo/irrigação sanguínea , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/deficiência , Guanilato Quinases/genética , Células HEK293 , Hipocampo/patologia , Humanos , Curva de Aprendizado , Deficiências da Aprendizagem/fisiopatologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Neurônios/ultraestrutura , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica/fisiologia , Ubiquitinação
11.
Brain ; 138(Pt 4): 946-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681412

RESUMO

The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson's disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson's disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Córtex Cerebral/patologia , Corpo Estriado/patologia , Globo Pálido/patologia , Doença de Parkinson Secundária/patologia , Núcleo Subtalâmico/patologia , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/patologia , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Feminino , Globo Pálido/efeitos dos fármacos , Haplorrinos , Macaca mulatta , Masculino , Doença de Parkinson Secundária/induzido quimicamente , Núcleo Subtalâmico/efeitos dos fármacos
12.
Front Syst Neurosci ; 8: 5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523677

RESUMO

Because of our limited knowledge of the functional role of the thalamostriatal system, this massive network is often ignored in models of the pathophysiology of brain disorders of basal ganglia origin, such as Parkinson's disease (PD). However, over the past decade, significant advances have led to a deeper understanding of the anatomical, electrophysiological, behavioral and pathological aspects of the thalamostriatal system. The cloning of the vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2) has provided powerful tools to differentiate thalamostriatal from corticostriatal glutamatergic terminals, allowing us to carry out comparative studies of the synaptology and plasticity of these two systems in normal and pathological conditions. Findings from these studies have led to the recognition of two thalamostriatal systems, based on their differential origin from the caudal intralaminar nuclear group, the center median/parafascicular (CM/Pf) complex, or other thalamic nuclei. The recent use of optogenetic methods supports this model of the organization of the thalamostriatal systems, showing differences in functionality and glutamate receptor localization at thalamostriatal synapses from Pf and other thalamic nuclei. At the functional level, evidence largely gathered from thalamic recordings in awake monkeys strongly suggests that the thalamostriatal system from the CM/Pf is involved in regulating alertness and switching behaviors. Importantly, there is evidence that the caudal intralaminar nuclei and their axonal projections to the striatum partly degenerate in PD and that CM/Pf deep brain stimulation (DBS) may be therapeutically useful in several movement disorders.

13.
Front Syst Neurosci ; 5: 68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897810

RESUMO

Striatal dopamine denervation is the pathological hallmark of Parkinson's disease (PD). Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba and Smith, 2011). The concept of tripartite synapses (TS) was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a). Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD therapeutics.

14.
J Comp Neurol ; 519(5): 989-1005, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21280048

RESUMO

Striatal spine loss is a key pathological feature of Parkinson's disease (PD). Knowing that striatal glutamatergic afferents target dendritic spines, these data appear difficult to reconcile with evidence for an increased expression of the vesicular glutamate transporter 1 (vGluT1) in the striatum of PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, as well as in some electrophysiological studies showing overactivity of the corticostriatal glutamatergic system in models of parkinsonism. To address the possibility that structural changes in glutamatergic afferents may underlie these discrepancies, we undertook an ultrastructural analysis of vGluT1-positive (i.e., corticostriatal) and vGluT2-positive (i.e., mostly thalamostriatal) axo-spinous glutamatergic synapses using a 3D electron microscopic approach in normal and MPTP-treated monkeys. Three main conclusions can be drawn: 1) spines contacted by vGluT1-containing terminals have larger volume and harbor significantly larger postsynaptic densities (PSDs) than those contacted by vGluT2-immunoreactive boutons; 2) a subset of vGluT2-, but not vGluT1-immunoreactive, terminals display a pattern of multisynaptic connectivity in normal and MPTP-treated monkeys; and 3) VGluT1- and vGluT2-positive axo-spinous synapses undergo ultrastructural changes (larger spine volume, larger PSDs, increased PSD perforations, larger presynaptic terminal) indicative of increased synaptic activity in parkinsonian animals. Furthermore, spines contacted by cortical terminals display an increased volume of their spine apparatus in MPTP-treated monkeys, suggesting an increased protein synthesis at corticostriatal synapses. These findings demonstrate that corticostriatal and thalamostriatal glutamatergic axo-spinous synapses display significantly different ultrastructural features, and that both systems undergo complex morphological changes that could underlie the pathophysiology of corticostriatal and thalamostriatal systems in PD.


Assuntos
Axônios/metabolismo , Córtex Cerebral/citologia , Corpo Estriado/citologia , Espinhas Dendríticas/metabolismo , Intoxicação por MPTP/patologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Tálamo/citologia , Animais , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Espinhas Dendríticas/ultraestrutura , Humanos , Macaca mulatta , Sinapses/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
Front Neuroanat ; 4: 133, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21179580

RESUMO

Striatal dopamine (DA) denervation results in a significant loss of dendritic spines on medium spiny projection neurons in Parkinson's disease. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated parkinsonian monkeys, spines contacted either by cortical or thalamic glutamatergic terminals are severely affected on both direct and indirect striatofugal neurons. In rodents, indirect pathway neurons appear to be more sensitive, at least in early stages of acute dopamine denervation. The remaining corticostriatal and thalamostriatal axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity in the DA-denervated primate striatum, which may explain the pathophysiological overactivity of the corticostriatal system reported in various animal models of parkinsonism. The calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 was recognized as a possible underlying mechanism for striatal spine plasticity. Future studies to determine how alterations in striatal spine plasticity contribute to the symptomatology of parkinsonism are warranted.

16.
Exp Neurol ; 226(2): 265-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20832405

RESUMO

The positron emission tomography (PET) tracer 2ß-carbomethoxy-3ß-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)-nortropane ((18)F-FECNT) is a highly specific ligand for dopamine transporter (DAT) that yields higher peak striatum-to-cerebellum ratios and offers more favorable kinetics than most (18)F-radiolabeled DAT ligands currently available. The goal of this study is to validate the use of (18)F-FECNT as a PET radiotracer to assess the degree of striatal dopamine terminals denervation and midbrain dopaminergic cell loss in MPTP-treated parkinsonian monkeys. Three rhesus monkeys received weekly injections of MPTP (0.2-0.5 mg/kg) for 21 weeks, which resulted in the progressive development of a moderate level of parkinsonism. We carried out (18)F-FECNT PET at baseline (twice; 10 weeks apart) and at week 21 post-MPTP injections. Postmortem stereological cell counts of dopaminergic neurons in the ventral midbrain, and intensity measurements of DAT and tyrosine hydroxylase (TH) immunoreactivity in the striatum were performed and correlated with striatal and ventral midbrain PET data. Three additional monkeys were used as controls for midbrain dopaminergic cell counts, and striatal DAT or TH immunoreactivity measurements. The correlation and coefficient of variance between (18)F-FECNT test-retest specific uptake ratios were 0.99 (R²) and 2.65%, respectively. The (18)F-FECNT binding potential of the ventral midbrain and striatal regions was tightly correlated with postmortem stereological cell counts of nigral dopaminergic neurons (R²=0.91), and striatal DAT (R²=0.83) or TH (R²=0.88) immunoreactivity intensity measurements. These findings demonstrate that (18)F-FECNT is a highly sensitive PET imaging ligand to quantify both striatal dopamine denervation and midbrain dopaminergic cell loss associated with parkinsonism.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Radioisótopos de Flúor , Intoxicação por MPTP/diagnóstico por imagem , Nortropanos , Tomografia por Emissão de Pósitrons , Animais , Autorradiografia , Sintomas Comportamentais/etiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calbindinas , Feminino , Ligantes , Intoxicação por MPTP/complicações , Intoxicação por MPTP/diagnóstico , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Proteína G de Ligação ao Cálcio S100/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Exp Neurol ; 215(2): 220-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18977221

RESUMO

Striatal spine loss is a key pathological feature of human Parkinson's disease (PD) that can be induced after complete degeneration of the nigrostriatal dopaminergic system in rodent models of parkinsonism. In line with these observations, our findings reveal a significant (30-50%) reduction in spine density in both the caudate nucleus and putamen of severely DA-depleted striata of MPTP-treated monkeys; the sensorimotor post-commissural putamen being the most severely affected region for both dopamine depletion and spine loss. Using MPTP-treated monkeys with complete or partial striatal dopamine (DA) denervation, we also demonstrate that striatal spine loss is an early pathological feature of parkinsonism, which progresses along a positive rostrocaudal and mediolateral gradient in parallel with the extent of striatal dopamine denervation. Quantitative electron microscopy immunocytochemistry for D1 dopamine receptor (D1) in the striatum of control and severely DA-depleted animals revealed that both D1-immunoreactive and immunonegative spines are lost in the putamen of MPTP-treated monkeys. These data demonstrate that striatal spine loss in MPTP-treated monkeys is an early pathological event of parkinsonism, tightly correlated with the degree of nigrostriatal dopamine denervation that likely affects both direct and indirect striatofugal pathways.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Corpo Estriado/citologia , Espinhas Dendríticas/efeitos dos fármacos , Dopamina/metabolismo , Neurônios/ultraestrutura , Neurotoxinas/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Feminino , Macaca mulatta , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Coloração pela Prata/métodos , Tirosina 3-Mono-Oxigenase/metabolismo
18.
J Comp Neurol ; 496(2): 269-87, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16538684

RESUMO

Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal ganglia circuits and a main source of inputs to the striatum. In this study, we analyzed the subcellular and subsynaptic distribution of GABA(B) receptor subunits by using light and electron microscopic immunocytochemical techniques. Quantitative immunoperoxidase and immunogold analysis showed that both subunits display a similar pattern of distribution in CM/PF, being expressed largely at extrasynaptic and perisynaptic sites in neuronal cell bodies, dendrites, and axon-like processes and less abundantly in axon terminals. Postsynaptic GABA(B)R1 labeling was found mostly on the plasma membrane (70-80%), whereas GABA(B)R2 was more evenly distributed between the plasma membrane and intracellular compartments of CM/PF neurons. A few axon terminals forming symmetric and asymmetric synapses were also labeled for GABA(B)R1 and GABA(B)R2, but the bulk of presynaptic labeling was expressed in small axon-like processes. About 20% of presynaptic vesicle-containing dendrites of local circuit neurons displayed GABA(B)R1/R2 immunoreactivity. Vesicular glutamate transporters (vGluT1)-containing terminals forming asymmetric synapses expressed GABA(B)R1 and/or displayed postsynaptic GABA(B)R1 at the edges of their asymmetric specialization. Overall, these findings provide evidence for multiple sites where GABA(B) receptors could modulate GABAergic and glutamatergic transmission in the primate CM/PF complex.


Assuntos
Receptores de GABA-B/metabolismo , Núcleos Talâmicos/metabolismo , Animais , Western Blotting/métodos , Macaca mulatta , Microscopia Imunoeletrônica/métodos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/ultraestrutura , Núcleos Talâmicos/citologia , Núcleos Talâmicos/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
19.
J Neurophysiol ; 94(2): 990-1000, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15829599

RESUMO

Neurons in the external and internal segment of the globus pallidus (GPe and GPi, respectively) receive substantial GABAergic inputs from the striatum and through axon collaterals of neighboring pallidal neurons. The effects of GABA on pallidal activity depend on the synaptic localization of GABA receptors and the distribution and activity of GABA transporters (GATs). To explore the contribution of GABA receptors and transporters to pallidal function, we recorded the activity of single neurons in GPe or GPi before, during, and after local microinjections of GABAergic compounds in awake rhesus monkeys. Activation of GABA(A) or GABA(B) receptors with muscimol or baclofen, respectively, inhibited pallidal activity. These effects were reversed by concomitant infusion of the respective GABA receptor antagonists, gabazine and CGP-55845. Given alone, the antagonists were without consistent effect. Application of the selective GAT-1 inhibitor, SKF-89976A, and the semiselective GAT-3 blocker, SNAP-5114, decreased pallidal activity. Both GAT inhibitors increased GABA levels in the pallidum, as measured by microdialysis. Electron microscopic observations revealed that these transporters are located on glial processes and unmyelinated axonal segments, but rarely on terminals. Our results indicate that activation of GABA(A) and GABA(B) receptors inhibits neuronal activity in both segments of the pallidum. GAT-1 and GAT-3 are involved in the modulation of endogenous GABA levels and may be important in regulating the extrasynaptic levels of GABA. Together with previous evidence that a considerable proportion of pallidal GABA receptors are located outside the synaptic cleft, our experiments strongly support the importance of extrasynaptic GABAergic transmission in the primate pallidum.


Assuntos
Globo Pálido/citologia , Proteínas de Membrana Transportadoras/fisiologia , Neurônios/efeitos dos fármacos , Receptores de GABA/fisiologia , Ácido gama-Aminobutírico/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anisóis/farmacologia , Baclofeno/farmacologia , Mapeamento Encefálico , Inibidores Enzimáticos/farmacologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA , Imuno-Histoquímica/métodos , Macaca mulatta , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/agonistas , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/classificação , Microdiálise/métodos , Microscopia Imunoeletrônica/métodos , Muscimol/farmacologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Ácidos Nipecóticos/farmacologia , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Piridazinas/farmacologia , Ácido gama-Aminobutírico/metabolismo
20.
J Comp Neurol ; 472(3): 257-80, 2004 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15065123

RESUMO

Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate-containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88-95% (depending on the antibody used) of C(II) dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense-core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA-IB4) binding and in 83-90% of C(I) glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV-containing afferents and in 50-60% of C(II) terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents.


Assuntos
Vias Aferentes/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras , Medula Espinal/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular , Vias Aferentes/citologia , Vias Aferentes/ultraestrutura , Animais , Animais Recém-Nascidos , Células do Corno Anterior/metabolismo , Células do Corno Anterior/ultraestrutura , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Transporte/ultraestrutura , Contagem de Células/métodos , Imunofluorescência/métodos , Glicoproteínas/metabolismo , Glicoesfingolipídeos/metabolismo , Imuno-Histoquímica/métodos , Lectinas/metabolismo , Microscopia Confocal/métodos , Microscopia Imunoeletrônica/métodos , Parvalbuminas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Terminações Pré-Sinápticas/classificação , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Rizotomia/métodos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/ultraestrutura , Antígenos Embrionários Estágio-Específicos , Sinapses/ultraestrutura , Versicanas , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...